342 research outputs found

    Ken Arvidson - 1938-2011

    Get PDF
    in memoriam - Kenneth Owen Arvidson was a local man and, one is driven to suspect, knew everyone and everything of the wider Waikato region. Born in Hamilton, Ken became a member of the English Department at Waikato University in 1974 where we were lucky enough to keep him for 28 years and more. He maintained his interest and connections with the scholarly business of the university during his retirement and will be sadly missed by friends and colleagues throughout New Zealand and beyond

    Opinion Cascades and Echo-Chambers in Online Networks: A Proof of Concept Agent-Based Model

    Get PDF
    In online networks, the polarization of opinions (e.g., regarding presidential elections or referenda) has been associated with the creation of “echo-chambers” of like-minded peers, secluded from those of contrary viewpoints. Previous work has commonly attributed such phenomena to self-regarding preferences (e.g., confirmation bias), individual differences, and the pre-dispositions of users, with clusters forming over repeated interactions. The present work provides a proof of concept Agent-Based Model that demonstrates online networks are susceptible to echo-chambers from a single opinion cascade, due to the spatiotemporal order induced by lateral transmission. This susceptibility is found to vary as a function of degree of interconnectivity and opinion strength. Critically, such effects are found despite globally proportionate levels of opinions, equally rational agents (i.e. absent conformity, confirmation bias or pre-disposition architecture), and prior to cyclical interactions. The assumptions and implications of this work, including the value of Agent-Based Modelling to cognitive psychology, are discussed

    Evaluating the influence of lake morphology, trophic status and diagenesis on geochemical profiles in lake sediments

    Get PDF
    Recent geochemical studies provide evidence that changes in vertical distributions of nutrients in lake sediments are driven by anthropogenic activities, based primarily on trends of increasing concentrations in upper sediment layers. However, we show that vertical concentration profiles of carbon (C), nitrogen (N) and phosphorus (P) in lake sediments can be higher in the upper, most recently deposited sediment strata, driven largely by natural diagenetic processes and not eutrophication alone. We examined sediment cores from 14 different lakes in New Zealand and China ranging from oligotrophic to highly eutrophic and shallow to deep, and found that the shape of vertical profiles of total P, a key nutrient for lake productivity, can be similar in sediments across gradients of widely differing trophic status. We derived and applied empirical and mechanistic diagenesis steady state profile models to describe the vertical distribution of C, N and P in the sediments. These models, which focus on large scale temporal (decades) and spatial (up to 35 cm in the vertical) processes, revealed that density-differentiated burial and biodiffusive mixing, were strongly correlated with vertical concentration gradients of sediment C, N and P content, whereas lake trophic status was not. A sensitivity analysis of parameters included in the diagenetic model further showed that the processes including flux of organic matter to the sediment-water interface, burial (net sedimentation), breakdown of organic matter and biodiffusion all significantly can influence the vertical distribution of sediment P content. We conclude that geochemical studies attempting to evaluate drivers of the vertical distribution of sediment C, N, and P content in lake sediments should also account for the natural diagenetic drivers of vertical concentration gradients, assisted with application of similar models to those presented in this study. This would include quantification of key sediment diagenesis model parameters to separate out the influence of anthropogenic activities

    Temporal and spatial variations in phytoplankton productivity in surface waters of a warm-temperate, monomictic lake in New Zealand

    Get PDF
    Surface phytoplankton productivity measurements were carried out in morphologically complex Lake Rotoiti with the objective of defining variations between sites and seasons, and the dominant environmental drivers of these variations. Measurements were carried out monthly at two depths at each of three morphologically diverse stations for 1 year throughout the lake. Productivity at the surface of the shallow embayment was significantly higher in most months of the year compared with the surface of the other two stations but there were no significant differences from September to December 2004. There were no relationships between measured environmental variables and primary productivity or specific production. Inorganic nutrient concentrations at the surface of the shallow station were low throughout the whole year but at the other two stations they showed a typical pattern for monomictic lakes of higher levels during winter mixing and declining concentrations during thermal stratification. The high variability between sites found in this study indicates that it is important to account for local differences in productivity in morphologically diverse lakes, and that whole lake productivity estimates may vary greatly depending on the location and depth of productivity measurements

    Effects of deposit-feeding bivalve (Macomona liliana) density on intertidal sediment stability

    Get PDF
    Effects of macrofaunal feeding and bioturbation on intertidal sediment stability (u*crit) were investigated by manipulating density (0-3 x ambient) of the facultative deposit-feeding wedge shell (Macomona liliana) on the Tuapiro sandflat in Tauranga Harbour, New Zealand. Sediment stability increased up to 200% with decreasing M. liliana density and this was correlated with greater sediment microalgal biomass and mucilage content. The change in stability occurred despite homogeneity of grain size amongst experimental treatments, highlighting the importance of macrofaunal-microbial relationships in determining estuarine sediment erodibility

    On the stabilizing influence of silt on sand beds

    Get PDF
    In marine environments, sediments from different sources are stirred and dispersed, generating beds that are composed of mixed and layered sediments of differing grain sizes. Traditional engineering formulations used to predict erosion thresholds are however, generally for unimodal sediment distributions, and so may be inadequate for commonly occurring coastal sediments. We tested the transport behavior of deposited and mixed sediment beds consisting of a simplified two-grain fraction (silt (D50  =  55 µm) and sand (D50 =  300 µm)) in a laboratory-based annular flume with the objective of investigating the parameters controlling the stability of a sediment bed. To mimic recent deposition of particles following large storm events and the longer-term result of the incorporation of fines in coarse sediment, we designed two suites of experiments: (1) “the layering experiment”: in which a sandy bed was covered by a thin layer of silt of varying thickness (0.2–3 mm; 0.5–3.7 wt %, dry weight in a layer 10 cm deep); and (2) “the mixing experiment” where the bed was composed of sand homogeneously mixed with small amounts of silt (0.07–0.7 wt %, dry weight). To initiate erosion and to detect a possible stabilizing effect in both settings, we increased the flow speeds in increments up to 0.30 m/s. Results showed that the sediment bed (or the underlying sand bed in the case of the layering experiment) stabilized with increasing silt composition. The increasing sediment stability was defined by a shift of the initial threshold conditions towards higher flow speeds, combined with, in the case of the mixed bed, decreasing erosion rates. Our results show that even extremely low concentrations of silt play a stabilizing role (1.4% silt (wt %) on a layered sediment bed of 10 cm thickness). In the case of a mixed sediment bed, 0.18% silt (wt %, in a sample of 10 cm depth) stabilized the bed. Both cases show that the depositional history of the sediment fractions can change the erosion characteristics of the seabed. These observations are summarized in a conceptual model that suggests that, in addition to the effect on surface roughness, silt stabilizes the sand bed by pore-space plugging and reducing the inflow in the bed, and hence increases the bed stability. Measurements of hydraulic conductivity on similar bed assemblages qualitatively supported this conclusion by showing that silt could decrease the permeability by up to 22% in the case of a layered bed and by up to 70% in the case of a mixed bed

    Communicated beliefs about action-outcomes: The role of initial confirmation in the adoption and maintenance of unsupported beliefs

    Get PDF
    As agents seeking to learn how to successfully navigate their environments, humans can both obtain knowledge through direct experience, and second-hand through communicated beliefs. Questions remain concerning how communicated belief (or instruction) interacts with first-hand evidence integration, and how the former can bias the latter. Previous research has revealed that people are more inclined to seek out confirming evidence when they are motivated to uphold the belief, resulting in confirmation bias. The current research explores whether merely communicated beliefs affect evidence integration over time when it is not of interest to uphold the belief, and all evidence is readily available. In a novel series of on-line experiments, participants chose on each trial which of two options to play for money, being exposed to outcomes of both. Prior to this, they were exposed to favourable communicated beliefs regarding one of two options. Beliefs were either initially supported or undermined by subsequent probabilistic evidence (probabilities reversed halfway through the task, rendering the options equally profitable overall). Results showed that while communicated beliefs predicted initial choices, they only biased subsequent choices when supported by initial evidence in the first phase of the experiment. Findings were replicated across contexts, evidence sequence lengths, and probabilistic distributions. This suggests that merely communicated beliefs can prevail even when not supported by long run evidence, and in the absence of a motivation to uphold them. The implications of the interaction between communicated beliefs and initial evidence for areas including instruction effects, impression formation, and placebo effects are discussed

    Targeting your preferences: modelling micro-targeting for an increasingly diverse electorate

    Get PDF
    The use of data to inform and run political campaigning has become an inescapable trend in recent years. In attempting to persuade an electorate, micro-targeted campaigns (MTCs) have been employed to great effect through the use of tailored messaging and selective targeting. Here we investigate the capacity of MTCs to deal with the diversity of political preferences across an electorate. More precisely, via an Agent-Based Model we simulate various diverse electorates that encompass single issue, multiple issue, swing, and disengaged voters (among others, including combinations thereof) and determine the relative persuasive efficacy of MTCs when pitted against more traditional, population-targeting campaigns. Taking into account the perceived credibility of these campaigns, we find MTCs highly capable of handling greater voter complexity than shown in previous work, and yielding further advantages beyond traditional campaigns in their capacity to avoid inefficient (or even backfiring) interactions – even when fielding a low credibility candidate

    Phylogeography of New Zealand’s coastal benthos

    Get PDF
    During the past 30 years, 42 molecular studies have been undertaken in New Zealand to examine the phylogeography of coastal benthic invertebrates and plants. Here, we identify generalities and/or patterns that have emerged from this research and consider the processes implicated in generating genetic structure within populations. Studies have used various molecular markers and examined taxonomic groups with a range of life histories and dispersal strategies. Genetic disjunctions have been identified at multiple locations, with the most frequently observed division occurring between northern and southern populations at the top of the South Island. Although upwelling has been implicated as a cause of this disjunction, oceanographic evidence is lacking and alternative hypotheses exist. A significant negative correlation between larval duration and genetic differentiation (r2 = 0.39, P < 0.001, n = 29) across all studies suggests that larval duration might be used as a proxy for dispersal potential. However, among taxa with short larval durations (<10 days) there was greater variability in genetic differentiation than among taxa with longer pelagic periods. This variability implies that when larval duration is short, other factors may determine dispersal and connectivity among populations. Although there has been little congruence between the phylogeographic data and recognised biogeographic regions, recent research has resolved population subdivision at finer spatial scales corresponding more closely with existing biogeographic classifications. The use of fast-evolving and ecologically significant molecular markers in hypothesis-driven research could further improve our ability to detect population subdivision and identify the processes structuring marine ecosystems

    The hydrodynamics of the southern basin of Tauranga Harbour

    Get PDF
    The circulation of the southern basin of Tauranga Harbour was simulated using a 3-D hydrodynamic model ELCOM. A 9-day field campaign in 1999 provided data on current velocity, temperature and salinity profiles at three stations within the main basin. The tidal wave changed most in amplitude and speed in the constricted entrances to channels, for example the M2 tide attenuated by 10% over 500 m at the main entrance, and only an additional 17% over the 15 km to the top of the southern basin. The modelled temperature was sensitive to wind mixing, particularly in tidal flat regions. Residence times ranged from 3 to 8 days, with higher residence times occurring in sub-estuaries with constricted mouths. The typical annual storm events were predicted to reduce the residence times by 24%–39% depending on season. Model scenarios of storm discharge events in the Wairoa River varying from 41.69 m3/s to 175.9 m3/s show that these events can cause salinity gradients across the harbour of up to 4 PSU
    corecore