47 research outputs found

    Managing active pharmaceutical ingredient raw material variability during twin-screw blend feeding

    Get PDF
    Continuous powder feeding is a critical step in continuous manufacturing of solid dosage forms, as this unit operation should ensure the mass flow consistency at the desired powder feed rate to guarantee the process throughput and final product consistency. In this study, twin-screw feeding of a pharmaceutical formulation (i.e., blend) existing of a highly dosed very poorly flowing active pharmaceutical ingredient (API) leading to insufficient feeding capacity was investigated. Furthermore, the API showed very high batch-to-batch variability in raw material properties dominating the formulation blend properties. Formulation changes were evaluated to improve the flowability of the blends and to mitigate the impact of API batch-to-batch variability on the twin-screw feeding. Herewith, feeding evaluation tests and an extensive material characterization of the reformulated blends were performed to assess the impact of the formulation changes upon continuous twin-screw feeding. The transfer of the glidant from extra-granular to intra-granular phase allowed to improve the flowability of the blends. A sufficient feeding capacity for the downstream process and a mitigation of the impact of batch-to-batch variability of the API upon twin-screw feeding of the blends could be achieved. No effect of the formulation or of the API properties on the feeding stability was observed. The material characterization of the blends allowed identifying the material attributes which were critical for continuous twin-screw feeding (i.e., bulk density, mass charge and powder cohesiveness)

    Aerosol delivery to ventilated newborn infants: historical challenges and new directions

    Get PDF
    There are several aerosolized drugs which have been used in the treatment of neonatal respiratory illnesses, such as bronchodilators, diuretics, and surfactants. Preclinical in vitro and in vivo studies identified a number of variables that affect aerosol efficiency, including particle size, aerosol flows, nebulizer choice, and placement. Nevertheless, an optimized aerosol drug delivery system for mechanically ventilated infants still does not exist. Increasing interest in this form of drug delivery requires more controlled and focused research of drug/device combinations appropriate for the neonatal population. In the present article, we review the research that has been conducted thus far and discuss the next steps in developing the optimal aerosol delivery system for use in mechanically ventilated neonates

    Scientific assessment of the use of sugars as cigarette tobacco ingredients: A review of published and other publicly available studies

    Get PDF
    Sugars, such as sucrose or invert sugar, have been used as tobacco ingredients in American-blend cigarettes to replenish the sugars lost during curing of the Burley component of the blended tobacco in order to maintain a balanced flavor. Chemical-analytical studies of the mainstream smoke of research cigarettes with various sugar application levels revealed that most of the smoke constituents determined did not show any sugar-related changes in yields (per mg nicotine), while ten constituents were found to either increase (formaldehyde, acrolein, 2-butanone, isoprene, benzene, toluene, benzo[k]fluoranthene) or decrease (4-aminobiphenyl, N-nitrosodimethylamine, N-nitrosonornicotine) in a statistically significant manner with increasing sugar application levels. Such constituent yields were modeled into constituent uptake distributions using simulations of nicotine uptake distributions generated on the basis of published nicotine biomonitoring data, which were multiplied by the constituent/nicotine ratios determined in the current analysis. These simulations revealed extensive overlaps for the constituent uptake distributions with and without sugar application. Moreover, the differences in smoke composition did not lead to relevant changes in the activity in in vitro or in vivo assays. The potential impact of using sugars as tobacco ingredients was further assessed in an indirect manner by comparing published data from markets with predominantly American-blend or Virginia-type (no added sugars) cigarettes. No relevant difference was found between these markets for smoking prevalence, intensity, some markers of dependence, nicotine uptake, or mortality from smoking-related lung cancer and chronic obstructive pulmonary disease. In conclusion, thorough examination of the data available suggests that the use of sugars as ingredients in cigarette tobacco does not increase the inherent risk and harm of cigarette smoking

    Pharmaceutical Particle Engineering via Spray Drying

    Full text link

    Managing API raw material variability during continuous twin-screw wet granulation

    No full text
    Very few studies have investigated the impact of raw material variability upon the granule critical quality attributes (CQAs) produced via twin-screw wet granulation (i.e., granule size distribution, density, flowability). In this study, the impact of the raw material variability of an active pharmaceutical ingredient (API) in a high dose formulation on the twin-screw wet granulation process and on the resulting granule quality attributes was investigated. In a previous study ( stauffer et al., 2018), eight API batches were characterized to determine the API batch-to-batch variability. Principal component analysis (PCA) was then used to analyse the raw material property differences between the API batches and to determine the causes of the batch-to-batch variability. In current study, the three principal components from that PCA model were used as factors together with twinscrew granulation process parameters (i.e., screw speed and liquid-to-solid ratio) in a D-optimal screening design of experiments to understand the influence of these factors upon the granule CQAs. It was found that the API particle size distribution and related properties (e.g., density, agglomeration profile) were critical for the granule CQAs. In a next step, the significant factors from the screening design results were used to determine the design space of the twin-screw granulation process for the studied formulation via a D-optimal optimisation design, herewith controlling the risk of failure for the potential API raw material variability. The possibility to obtain suitable granule CQAs with a risk of failure of 1% for all API batches was demonstrated. It was thus possible to identify a combination of process parameters that can manage the API batch-to-batch variability leading to granules with pre-defined suitable CQAs

    Managing API raw material variability in a continuous manufacturing line : prediction of process robustness

    No full text
    Many studies on continuous twin-screw granulation only focus on the granulator without linking this process step to the upstream and downstream unit operations. Product critical quality attributes (CQAs) are however not only determined by the granulation step. In this study, the possibility to manage the batch-to-batch variability of an active pharmaceutical ingredient (API) in a high drug loaded formulation on a continuous line was investigated to obtain consistent tablet CQAs. As the ultimate goal of continuous manufacturing is to produce 24/7, current study also aimed at guaranteeing long term stability of the process. To do so, previously identified API critical material attributes (CMAs) were varied together with granulation, drying and milling critical process parameters (CPPs) in a screening design of experiments to understand the influence of these factors upon product CQAs and process stability. To evaluate the factors affecting the process stability with a reduced amount of materials, process deviations recorded by process sensors were used. While product CQAs only depended on process CPPs, process stability was strongly affected by API CMAs. The effect of API batch-to-batch variability on process stability could nonetheless be managed by applying suitable granulation conditions. Therefore, appropriate ranges of CPPs were defined to ensure both product CQAs and process stability. By studying the fully integrated continuous manufacturing line, it was possible to highlight the interactions between the different unit operations and the API CMAs and to design a robust process

    Raw material variability of an active pharmaceutical ingredient and its relevance for processability in secondary continuous pharmaceutical manufacturing

    No full text
    Active Pharmaceutical Ingredients (API) raw material variability is not always thoroughly considered during pharmaceutical process development, mainly due to low quantities of drug substance available. However, synthesis, crystallization routes and production sites evolve during product development and product life cycle leading to changes in physical material attributes which can potentially affect their processability. Recent literature highlights the need for a global approach to understand the link between material synthesis, material variability, process and product quality. The study described in this article aims at explaining the raw material variability of an API using extensive material characterization on a restricted number of representative batches using multivariate data analysis. It is part of a larger investigation trying to link the API drug substance manufacturing process, the resulting physical API raw material attributes and the drug product continuous manufacturing process. Eight API batches produced using different synthetic routes, crystallization, drying, delumping processes and processing equipment were characterized, extensively. Seventeen properties from seven characterization techniques were retained for further analysis using Principal Component Analysis (PCA). Three principal components (PCs) were sufficient to explain 92.9% of the API raw material variability. The first PC was related to crystal length, agglomerate size and fraction, flow ability and electrostatic charging. The second PC was driven by the span of the particle size distribution and the agglomerates strength. The third PC was related to surface energy. Additionally, the PCA allowed to summarize the API batch-to-batch variability in only three PCs which can be used in future drug product development studies to quantitatively evaluate the impact of the API raw material variability upon the drug product process. The approach described in this article could be applied to any other compound which is prone to batch-to-batch variability

    Temozolomide-Based Dry Powder Formulations for Lung Tumor-Related Inhalation Treatment.

    No full text
    PURPOSE: Temozolomide dry powder formulations for inhalation, performed with no excipient or with a lipid or lactose coating, have been evaluated. METHODS: The particle size of raw temozolomide in suspension was reduced by a high-pressure homogenizing technique, and the solvent was evaporated by spray-drying to obtain a dry powder. The physicochemical properties of this powder were evaluated and included its crystalline state, thermal properties, morphology, particle size and moisture and drug content, and these properties were determined by X-ray powder diffraction, differential scanning calorimetry, scanning electron microscopy, laser light scattering, thermogravimetric analysis and high-performance liquid chromatography, respectively. The aerodynamic properties and release profiles were also evaluated using a multistage liquid impinger and a modified USP type 2 dissolution apparatus adapted for inhaler products, respectively. RESULTS: The dry powder inhalation formulations had a high temozolomide content that ranged from 70% to 100% in the crystalline state and low moisture content. Aerodynamic evaluations showed high fine-particle fractions of up to 51% related to the metered dose. The dissolution profile revealed a similarly fast temozolomide release from the formulations. CONCLUSIONS: Dry temozolomide powder formulations, based on the use of acceptable excipients for inhalation and showing good dispersion properties, represent an attractive alternative for use in local lung cancer therapy.JOURNAL ARTICLESCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore