3 research outputs found
Object detection and localization: an application inspired by RobotAtFactory using machine learning
Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáThe evolution of artificial intelligence and digital cameras has made the transformation of the real world into its digital image version more accessible and widely used. In this way, the analysis of information can be carried out with the use of algorithms. The detection and localization of objects is a crucial task in several applications, such as surveillance, autonomous robotics, intelligent transportation systems, and others. Based on this, this work aims to implement a system that can find objects and estimate their location (distance and angle), through the acquisition and analysis of images. Having as motivation the possible problems that can be introduced in the robotics competition, RobotAtFactory Lite, in future versions. As an example, the obstruction of the path developed through the printed lines, requiring the robot to deviate, and/or the positioning of the boxes in different places of the initial warehouses, being positioned so that the
robot does not know its previous location, having to find it somehow. For this, different methods were analyzed, based on machine leraning, for object detection using feature extraction and neural networks, as well as object localization, based on the Pinhole model and triangulation. By compiling these techniques through python programming in the module, based on a Raspberry Pi Model B and a Raspi Cam Rev 1.3, the goal of the work is achieved. Thus, it was possible to find the objects and obtain an estimate of their
relative position. In the future, in a possible implementation together with a robot, this data can be used to find objects and perform tasks.A evolução da inteligência artificial e das câmeras digitais, tornou mais acessível e amplamente utilizada a transformação do mundo real, para sua versão em imagem digital. Dessa maneira, a análise das informações pode ser efetuada com a utilização de algoritmos. A deteção e localização de objetos é uma tarefa crucial em diversas aplicações, tais como vigilância, robótica autônoma, sistemas de transporte inteligente, entre outras. Baseado nisso, este trabalho tem como objetivo implementar um sistema que consiga encontrar objetos e estimar sua localização (distância e ângulo), através da aquisição e análise de imagens. Tendo como motivação os possíveis problemas que possam ser introduzidos na competição de robótica, Robot@Factory Lite, em versões futuras. Podendo ser citados como exemplo a obstrução do caminho desenvolvido através das linhas impressas, requerendo que o robô desvie, e/ou o posicionamento das caixas em locais diferentes dos armazéns iniciais, sendo posicionadas de modo que o robô não saiba sua localização prévia, devendo encontra-las de alguma maneira. Para isso, foram analisados diferentes
métodos, baseadas em machine leraning, para deteção de objetos utilizando extração de características e redes neurais, bem como a localização de objetos, baseada no modelo de Pinhole e triangulação. Compilando essas técnicas através da programação em python, no módulo, baseado em um Raspberry Pi Model B e um Raspi Cam Rev 1.3, o objetivo do trabalho é alcançado. Assim, foi possível encontrar os objetos e obter uma estimativa da sua posição relativa. Futuramente, em uma possível implementação junta a um robô, esses dados podem ser utilizados para encontrar objetos e executar tarefas
Robot at factory lite - a step-by-step educational approach to the robot assembly
In a robotics scope, an excellent way to test and improve knowledge is through competitions. In other words, it is possible to follow the results in practice, compare them with the development of other teams and improve the current solutions. The Robot At Factory Lite proposal simulates an Industry 4.0 warehouse scenario, applying education through Science, Technology, Engineering, and Mathematics (STEM) methodology, where the participants have to work on a solution to overcome its challenges. Thus, this article presents an initial electromechanical proposal, which is the basis for developing robots for this competition. The presented main concepts aim to inform the possibilities of using the robot’s parts and components. Thus, an idea can be sketched in the participants’ minds, inspiring them to use their imagination and knowledge through the presentation of this model.The authors are grateful to the Foundation for Science and Technology (FCT,
Portugal) for financial support through national funds FCT/MCTES (PIDDAC)
to CeDRI (UIDB/05757/2020 and UIDP/05757/2020), SusTEC (LA/P/0007/
2021). The project that gave rise to these results received the support of a
fellowship from ”la Caixa” Foundation (ID 100010434). The fellowship code is
LCF/BQ/DI20/11780028.info:eu-repo/semantics/publishedVersio
An AI-based object detection approach for robotic competitions
Artificial Intelligence has been introduced in many
applications, namely in artificial vision-based systems with object
detection tasks. This paper presents an object localization system
with a motivation to use it in autonomous mobile robots at
robotics competitions. The system aims to allow robots to accomplish
their tasks more efficiently. Object detection is performed
using a camera and artificial intelligence based on the YOLOv4
Tiny detection model. An algorithm was developed that uses the
data from the system to estimate the parameters of location,
distance, and orientation based on the pinhole camera model and
trigonometric modelling. It can be used in smart identification
procedures of objects. Practical tests and results are presented,
constantly locating the objects and with errors between 0.16 and
3.8 cm, concluding that the object localization system is adequate
for autonomous mobile robots.The authors are grateful to the Foundation for Science
and Technology (FCT, Portugal) for financial support
through national funds FCT/MCTES (PIDDAC) to CeDRI
(UIDB/05757/2020 and UIDP/05757/2020). The project that
gave rise to these results received the support of a fellowship
from ”la Caixa” Foundation (ID 100010434). The fellowship
code is LCF/BQ/DI20/11780028. João Braun is a PhD Student
at the Faculty of Engineering, University of Porto (FEUP)
supervised by Prof. Paulo Costa.info:eu-repo/semantics/publishedVersio