636 research outputs found

    Summability of multilinear forms on classical sequence spaces

    Full text link
    We present an extension of the Hardy--Littlewood inequality for multilinear forms. More precisely, let K\mathbb{K} be the real or complex scalar field and m,km,k be positive integers with mβ‰₯k m\geq k\, and n1,…,nkn_{1},\dots ,n_{k} be positive integers such that n1+β‹―+nk=mn_{1}+\cdots +n_{k}=m. (aa) If (r,p)∈(0,∞)Γ—[2m,∞](r,p)\in (0,\infty )\times \lbrack 2m,\infty ] then there is a constant Dm,r,p,kKβ‰₯1D_{m,r,p,k}^{\mathbb{K}}\geq 1 (not depending on nn) such that \left( \sum_{i_{1},\dots ,i_{k}=1}^{n}\left| T\left( e_{i_{1}}^{n_{1}},\dots ,e_{i_{k}}^{n_{k}}\right) \right| ^{r}\right) ^{% \frac{1}{r}}\leq D_{m,r,p,k}^{\mathbb{K}} \cdot n^{max\left\{ \frac{% 2kp-kpr-pr+2rm}{2pr},0\right\} }\left| T\right| for all mm-linear forms T:β„“pnΓ—β‹―Γ—β„“pnβ†’KT:\ell_{p}^{n}\times \cdots \times \ell_{p}^{n}\rightarrow \mathbb{K} and all positive integers nn. Moreover, the exponent max{2kpβˆ’kprβˆ’pr+2rm2pr,0}max\left\{ \frac{2kp-kpr-pr+2rm}{2pr},0\right\} is optimal. (bb) If (r,p)∈(0,∞)Γ—(m,2m](r, p) \in (0, \infty) \times (m, 2m] then there is a constant Dm,r,p,kKβ‰₯1% D_{m,r,p, k}^{\mathbb{K}}\geq 1 (not depending on nn) such that \left( \sum_{i_{1},\dots ,i_{k}=1}^{n }\left| T\left( e_{i_{1}}^{n_{1}},\dots ,e_{i_{k}}^{n_{k}}\right) \right| ^{r }\right) ^{% \frac{1}{r }}\leq D_{m,r,p, k}^{\mathbb{K}} \cdot n^{ max \left\{\frac{% p-rp+rm}{pr}, 0\right\}}\left| T\right| for all mm-linear forms T:β„“pnΓ—β‹―Γ—β„“pnβ†’KT:\ell_{p}^{n}\times \cdots \times \ell_{p}^{n}\rightarrow \mathbb{K} and all positive integers nn. Moreover, the exponent max{pβˆ’rp+rmpr,0}max \left\{\frac{p-rp+rm}{pr}, 0\right\} is optimal. The case k=mk=m recovers a recent result due to G. Araujo and D. Pellegrino
    • …
    corecore