78 research outputs found
Large-scale cosmic flows and moving dark energy
Large-scale matter bulk flows with respect to the cosmic microwave background
have very recently been detected on scales 100 Mpc/h and 300 Mpc/h by using two
different techniques showing an excellent agreement in the motion direction.
However, the unexpectedly large measured amplitudes are difficult to understand
within the context of standard LCDM cosmology. In this work we show that the
existence of such a flow could be signaling the presence of moving dark energy
at the time when photons decoupled from matter. We also comment on the relation
between the direction of the CMB dipole and the preferred axis observed in the
quadrupole in this scenario.Comment: 11 pages, 2 figures. New comments and references included. Final
version to appear in JCA
Measuring the cosmological bulk flow using the peculiar velocities of supernovae
We study large-scale coherent motion in our universe using the existing Type
IA supernovae data. If the recently observed bulk flow is real, then some
imprint must be left on supernovae motion. We run a series of Monte Carlo
Markov Chain runs in various redshift bins and find a sharp contrast between
the z 0.05 data. The$z < 0.05 data are consistent with the bulk
flow in the direction (l,b)=({290^{+39}_{-31}}^{\circ},
{20^{+32}_{-32}}^{\circ}) with a magnitude of v_bulk = 188^{+119}_{-103} km/s
at 68% confidence. The significance of detection (compared to the null
hypothesis) is 95%. In contrast, z > 0.05 data (which contains 425 of the 557
supernovae in the Union2 data set) show no evidence for bulk flow. While the
direction of the bulk flow agrees very well with previous studies, the
magnitude is significantly smaller. For example, the Kashlinsky, et al.'s
original bulk flow result of v_bulk > 600 km/s is inconsistent with our
analysis at greater than 99.7% confidence level. Furthermore, our best-fit bulk
flow velocity is consistent with the expectation for the \Lambda CDM model,
which lies inside the 68% confidence limit.Comment: Version published in JCA
Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution
A new class of FLRW cosmological models with time-evolving fundamental
parameters should emerge naturally from a description of the expansion of the
universe based on the first principles of quantum field theory and string
theory. Within this general paradigm, one expects that both the gravitational
Newton's coupling, G, and the cosmological term, Lambda, should not be strictly
constant but appear rather as smooth functions of the Hubble rate. This
scenario ("running FLRW model") predicts, in a natural way, the existence of
dynamical dark energy without invoking the participation of extraneous scalar
fields. In this paper, we perform a detailed study of these models in the light
of the latest cosmological data, which serves to illustrate the
phenomenological viability of the new dark energy paradigm as a serious
alternative to the traditional scalar field approaches. By performing a joint
likelihood analysis of the recent SNIa data, the CMB shift parameter, and the
BAOs traced by the Sloan Digital Sky Survey, we put tight constraints on the
main cosmological parameters. Furthermore, we derive the theoretically
predicted dark-matter halo mass function and the corresponding redshift
distribution of cluster-size halos for the "running" models studied. Despite
the fact that these models closely reproduce the standard LCDM Hubble
expansion, their normalization of the perturbation's power-spectrum varies,
imposing, in many cases, a significantly different cluster-size halo redshift
distribution. This fact indicates that it should be relatively easy to
distinguish between the "running" models and the LCDM cosmology using realistic
future X-ray and Sunyaev-Zeldovich cluster surveys.Comment: Version published in JCAP 08 (2011) 007: 1+41 pages, 6 Figures, 1
Table. Typos corrected. Extended discussion on the computation of the
linearly extrapolated density threshold above which structures collapse in
time-varying vacuum models. One appendix, a few references and one figure
adde
Nonlinear Effects in the Amplitude of Cosmological Density Fluctuations
The amplitude of cosmological density fluctuations, sigma_8, has been studied
and estimated by analysing many cosmological observations. The values of the
estimates vary considerably between the various probes. However, different
estimators probe the value of sigma_8 in different cosmological scales and do
not take into account the nonlinear evolution of the parameter at late times.
We show that estimates of the amplitude of cosmological density fluctuations
derived from cosmic flows are systematically higher than those inferred at
early epochs from the CMB because of nonlinear evolution at later times. We
discuss the past and future evolution of linear and nonlinear perturbations,
derive corrections to the value of sigma_8 and compare amplitudes after
accounting for these differences.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in JCA
Recommended from our members
Legal Problems Inherent in the Development of Geopressured and Geothermal Resources in Louisiana. Final Report
The legal framework within which the geopressured resource will have to be developed in Louisiana is discussed generally. Those problems which may be created by its development within that framework are identified. Where possible, solutions are offered to those problems or at least techniques or devices are indicated which might be considered in their resolution. Finally, a compendium is assembled of those statutory or regulatory provisions which may regulate or affect the resource to the end that it might serve as a handbook for the evaluation of the legal and institutional problems which will face a prospective developer, when and if the resource development is undertaken in Louisiana. (MHR
Biology and novel treatment options for XLA, the most common monogenetic immunodeficiency in man
Introduction: X-linked agammaglobulinemia (XLA) is the most common primary immunodeficiency in man, and is caused by a single genetic defect. Inactivating mutations in the Bruton's tyrosine kinase (BTK) gene are invariably the cause of XLA,. XLA is characterized by a differentiation arrest at the pre-B cell stage, the absence of immunoglobulins and recurrent bacterial infections, making it an insidious disease that gradually disables the patient, and can result in death due to chronic lung disease. Current treatment involves prophylactic antibiotics and immunoglobulin infusions, which are non-curative. This disease is a good candidate for curative hematopoietic stem cell (HSC)-based gene therapy, which could correct the B cell and myeloid deficiencies. Areas covered: This paper reviews the basic biology of BTK in B cell development, the clinical features of XLA, and the possibilities of gene therapy for XLA, covering the literature from 1995 to 2010. Expert opinion: Work from various laboratories demonstrates the feasibility of using gene-corrected HSCs to complement the immune defects of Btk-deficiency in mice. We propose that it is timely to start clinical programs to develop stem cell based therapy for XLA, using gene-corrected autologous HSC
Identification of candidate genome regions controlling disease resistance in Arachis
Background
Worldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.
Results
In this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.
Conclusion
Candidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance
- …