284 research outputs found
Postnatal DNA demethylation and its role in tissue maturation.
Development in mammals is accompanied by specific de novo and demethylation events that are thought to stabilize differentiated cell phenotypes. We demonstrate that a large percentage of the tissue-specific methylation pattern is generated postnatally. Demethylation in the liver is observed in thousands of enhancer-like sequences associated with genes that undergo activation during the first few weeks of life. Using. conditional gene ablation strategy we show that the removal of these methyl groups is stable and necessary for assuring proper hepatocyte gene expression and function through its effect on chromatin accessibility. These postnatal changes in methylation come about through exposure to hormone signaling. These results define the molecular rules of 5-methyl-cytosine regulation as an epigenetic mechanism underlying cellular responses to. changing environment
UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma
Although clonal neo-antigen burden is associated with improved response to immune therapy, the functional basis for this remains unclear. Here we study this question in a novel controlled mouse melanoma model that enables us to explore the effects of intra-tumor heterogeneity (ITH) on tumor aggressiveness and immunity independent of tumor mutational burden. Induction of UVB-derived mutations yields highly aggressive tumors with decreased anti-tumor activity. However, single-cell-derived tumors with reduced ITH are swiftly rejected. Their rejection is accompanied by increased T cell reactivity and a less suppressive microenvironment. Using phylogenetic analyses and mixing experiments of single-cell clones, we dissect two characteristics of ITH: the number of clones forming the tumor and their clonal diversity. Our analysis of melanoma patient tumor data recapitulates our results in terms of overall survival and response to immune checkpoint therapy. These findings highlight the importance of clonal mutations in robust immune surveillance and the need to quantify patient ITH to determine the response to checkpoint blockade
Targeting A20 Decreases Glioma Stem Cell Survival and Tumor Growth
The A20 protein is a known inhibitor of apoptosis that here is shown to be a novel cancer stem cell-promoting factor associated with poor glioma patient survival
Allergic inflammation does not impact chemical-induced carcinogenesis in the lungs of mice
<p>Abstract</p> <p>Background</p> <p>Although the relationship between allergic inflammation and lung carcinogenesis is not clearly defined, several reports suggest an increased incidence of lung cancer in patients with asthma. We aimed at determining the functional impact of allergic inflammation on chemical carcinogenesis in the lungs of mice.</p> <p>Methods</p> <p>Balb/c mice received single-dose urethane (1 g/kg at day 0) and two-stage ovalbumin during tumor initiation (sensitization: days -14 and 0; challenge: daily at days 6-12), tumor progression (sensitization: days 70 and 84; challenge: daily at days 90-96), or chronically (sensitization: days -14 and 0; challenge: daily at days 6-12 and thrice weekly thereafter). In addition, interleukin (IL)-5 deficient and wild-type C57BL/6 mice received ten weekly urethane injections. All mice were sacrificed after four months. Primary end-points were number, size, and histology of lung tumors. Secondary end-points were inflammatory cells and mediators in the airspace compartment.</p> <p>Results</p> <p>Ovalbumin provoked acute allergic inflammation and chronic remodeling of murine airways, evident by airspace eosinophilia, IL-5 up-regulation, and airspace enlargement. Urethane resulted in formation of atypical alveolar hyperplasias, adenomas, and adenocarcinomas in mouse lungs. Ovalbumin-induced allergic inflammation during tumor initiation, progression, or continuously did not impact the number, size, or histologic distribution of urethane-induced pulmonary neoplastic lesions. In addition, genetic deficiency in IL-5 had no effect on urethane-induced lung tumorigenesis.</p> <p>Conclusions</p> <p>Allergic inflammation does not impact chemical-induced carcinogenesis of the airways. These findings suggest that not all types of airway inflammation influence lung carcinogenesis and cast doubt on the idea of a mechanistic link between asthma and lung cancer.</p
NF-kappa B genes have a major role in Inflammatory Breast Cancer
<p>Abstract</p> <p>Background</p> <p>IBC (Inflammatory Breast cancer) is a rare form of breast cancer with a particular phenotype. New molecular targets are needed to improve the treatment of this rapidly fatal disease. Given the role of NF-κB-related genes in cell proliferation, invasiveness, angiogenesis and inflammation, we postulated that they might be deregulated in IBC.</p> <p>Methods</p> <p>We measured the mRNA expression levels of 60 NF-κB-related genes by using real-time quantitative RT-PCR in a well-defined series of 35 IBCs, by comparison with 22 stage IIB and III non inflammatory breast cancers. Twenty-four distant metastases of breast cancer served as "poor prognosis" breast tumor controls.</p> <p>Results</p> <p>Thirty-five (58%) of the 60 NF-κB-related genes were significantly upregulated in IBC compared with non IBC. The upregulated genes were NF-κB genes (<it>NFKB1</it>, <it>RELA</it>, <it>IKBKG</it>, <it>NFKBIB</it>, <it>NFKB2</it>, <it>REL</it>, <it>CHUK</it>), apoptosis genes (<it>MCL1L</it>, <it>TNFAIP3/A20</it>, <it>GADD45B</it>, <it>FASLG</it>, <it>MCL1S</it>, <it>IER3L</it>, <it>TNFRSF10B/TRAILR2</it>), immune response genes (<it>CD40</it>, <it>CD48</it>, <it>TNFSF11/RANKL</it>, <it>TNFRSF11A/RANK</it>, <it>CCL2/MCP-1</it>, <it>CD40LG</it>, <it>IL15</it>, <it>GBP1</it>), proliferation genes (<it>CCND2</it>, <it>CCND3</it>, <it>CSF1R</it>, <it>CSF1</it>, <it>SOD2</it>), tumor-promoting genes (<it>CXCL12</it>, <it>SELE</it>, <it>TNC</it>, <it>VCAM1</it>, <it>ICAM1</it>, <it>PLAU/UPA</it>) or angiogenesis genes (<it>PTGS2/COX2</it>, <it>CXCL1/GRO1</it>). Only two of these 35 genes (<it>PTGS2/COX2 </it>and <it>CXCL1/GRO1</it>)were also upregulated in breast cancer metastases. We identified a five-gene molecular signature that matched patient outcomes, consisting of <it>IL8 </it>and <it>VEGF </it>plus three NF-κB-unrelated genes that we had previously identified as prognostic markers in the same series of IBC.</p> <p>Conclusion</p> <p>The NF-κB pathway appears to play a major role in IBC, possibly contributing to the unusual phenotype and aggressiveness of this form of breast cancer. Some upregulated NF-κB-related genes might serve as novel therapeutic targets in IBC.</p
Inverse Relationship between PSA and IL-8 in Prostate Cancer: An Insight into a NF-κB-Mediated Mechanism
Background: Prostate specific antigen (PSA) is traditionally used as an indicator for the presence of prostate cancer (PCa) and radiotherapy is generally used to treat inoperable and locally advanced PCa. However, how cellular PSA level is associated with sensitivity of PCa to radiotherapy is unknown. The previous finding that the RelB-based NF-kB alternative pathway differentially regulates PSA and interleukin-8 (IL-8) in aggressive PCa has directed our attention to the role of RelB in the response of PCa to radiotherapy. Methodology/Principal Findings: RelB and its targets PSA and IL-8 in PCa cells were manipulated by ectopic expression in PCa cells with a low endogenous level of RelB (LNCaP) and by RNAi-based knock-down in PCa cells with a high constitutive level of RelB (PC3). The effects of RelB, PSA and IL-8 on the response of PCa to radiation treatment were examined in vitro and in xenograft tumors. RelB regulates PSA and IL-8 in an inverse manner. When the cellular levels of PSA and IL-8 were directly modulated by genetic manipulations or by the addition of recombinant proteins, the results demonstrate that upregulation of IL-8 enhanced radioresistance of PCa cells and concurrently down-regulated PSA. In contrast, up-regulation of PSA resulted in reduced radioresistance with concurrent down-regulation of IL-8. Conclusion/Significance: RelB plays a critical role in the response of PCa to radiotherapy and the inverse expression of IL-8 and PSA. The results identify a previously unrecognized relationship between IL-8 and PSA in the response of PCa cells t
The Chemokine CXCL16 and Its Receptor, CXCR6, as Markers and Promoters of Inflammation-Associated Cancers
Clinical observations and mouse models have suggested that inflammation can be pro-tumorigenic. Since chemokines are critical in leukocyte trafficking, we hypothesized that chemokines play essential roles in inflammation-associated cancers. Screening for 37 chemokines in prostate cancer cell lines and xenografts revealed CXCL16, the ligand for the receptor CXCR6, as the most consistently expressed chemokine. Immunohistochemistry and/or immunofluorescence and confocal imaging of 121 human prostate specimens showed that CXCL16 and CXCR6 were co-expressed, both on prostate cancer cells and adjacent T cells. Expression levels of CXCL16 and CXCR6 on cancer cells correlated with poor prognostic features including high-stage and high-grade, and expression also correlated with post-inflammatory changes in the cancer stroma as revealed by loss of alpha-smooth muscle actin. Moreover, CXCL16 enhanced the growth of CXCR6-expressing cancer and primary CD4 T cells. We studied expression of CXCL16 in an additional 461 specimens covering 12 tumor types, and found that CXCL16 was expressed in multiple human cancers associated with inflammation. Our study is the first to describe the expression of CXCL16/CXCR6 on both cancer cells and adjacent T cells in humans, and to demonstrate correlations between CXCL16 and CXCR6 vs. poor both prognostic features and reactive changes in cancer stoma. Taken together, our data suggest that CXCL16 and CXCR6 may mark cancers arising in an inflammatory milieu and mediate pro-tumorigenic effects of inflammation through direct effects on cancer cell growth and by inducing the migration and proliferation of tumor-associated leukocytes
Enhanced Hsp70 Expression Protects against Acute Lung Injury by Modulating Apoptotic Pathways
The Acute respiratory distress syndrome (ARDS) is a highly lethal inflammatory lung disorder. Apoptosis plays a key role in its pathogenesis. We showed that an adenovirus expressing the 70 kDa heat shock protein Hsp70 (AdHSP) protected against sepsis-induced lung injury. In this study we tested the hypothesis that AdHSP attenuates apoptosis in sepsis-induced lung injury
Regulation of HSP27 on NF-κB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis
<p>Abstract</p> <p>Background</p> <p>During the process of metastasis, cells are subjected to various apoptotic stimuli. Aberrant expression of apoptotic regulators often contribute to cell metastasis. Heat shock protein 27(HSP27) is confirmed as an apoptosis regulator, but its antiapoptotic mechanism in metastatic hepatocellular carcinoma (HCC) cells remains unclear.</p> <p>Methods</p> <p>Levels of HSP27 protein and its phosphorylation in Hep3B, MHCC97L to MHCC97H cells with different metastatic potentials were determined by western blot analysis. MHCC97H cells were transfected with specific small interference RNA (siRNA) against HSP27. The <it>in vitro </it>migration and invasion potentials of cells were evaluated by Transwell assay. The apoptosis ratio of MHCC97H cells was analyzed by TUNEL staining and Flow Cytometry. Alteration of signal transduction pathway after HSP27 knockdown in MHCC97H cells was evaluated through a Human Q Series Signal Transduction in Cancer Gene Array analysis. Nuclear NF-κB contentration and endogenous IKK activity were demonstrated by ELISA assay. The association of IKKα, IKKβ, IκBα with HSP27 and the association between IKKβ and IKKα in MHCC97H cells were determined by co-immunoprecipitation assay followed by western blot analysis.</p> <p>Results</p> <p>HSP27 protein and its phosphorylation increased in parallel with enhanced metastatic potentials of HCC cells. siRNA-mediated HSP27 knockdown in MHCC97H significantly suppressed cells migration and invasion <it>in vitro </it>and induced cell apoptosis; the prominently altered signal transduction pathway was NF-κB pathway after HSP27 knockdown in MHCC97H cells. Furthermore, inhibition of HSP27 expression led to a significant decrease of nuclear NF-κB contentration and endogenous IKK activity. In addition, HSP27 was associated with IKKα, IKKβ, IκBα in three HCC cells above. ELISA assay and western blot analysis also showed a decrease of the association between IKKβ and IKKα, the association between phosphor-HSP27 and IKK complex, and an increase of total IκBα but reducing tendency of phosphor-IκBα when HSP27 expression was efficiently knocked down in MHCC97H cells.</p> <p>Conclusion</p> <p>Altogether, these findings revealed a possible effect of HSP27 on apoptosis in metastatic HCC cells, in which HSP27 may regulate NF-kB pathway activation.</p
Effects of NFKB1 and NFKBIA Gene Polymorphisms on Susceptibility to Environmental Factors and the Clinicopathologic Development of Oral Cancer
encoding IkappaBalpha (IκBα) with both the susceptibility to develop OSCC and the clinicopathological characteristics of the tumors.<.05), compared with those patients CC homozygotes. 519 might be a predictive factor for the distal metastasis of OSCC in Taiwanese
- …