339 research outputs found
Todellisuuden tutkimiseen tarvitaan vain yhtä tiedettä
Vuosisatojen ajan akateeminen yhteisö on jakautunut jyrkästi luonnontieteisiin ja humanistisiin tieteisiin. Keinotekoisesti ylläpidetty jako on hidastanut tieteen kehitystä ja saanut usein avoimen vihamielisiä ja poliittisia ulottuvuuksia. Erilaisista näkökulmistaan, selitystavoistaan ja menetelmistään huolimatta luonnontieteet ja ihmistieteet tutkivat samaa todellisuutta. Siksi tieteenaloja ei pitäisi nähdä keskenään kilpailevina vaan toisiaan täydentävinä. Ristiriidat johtuvat aina tutkijoista, eivät koskaan tieteistä. Onneksi tiede korjaa itseään, ja muutosten tuuli puhaltaa akateemisessa maailmassa.</p
Advanced gynecologic malignancies treated with a combination of the VEGF inhibitor bevacizumab and the mTOR inhibitor temsirolimus.
BackgroundBevacizumab and temsirolimus are active agents in gynecologic tumors. Temsirolimus attenuates upregulation of HIF-1α levels, a resistance mechanism for antiangiogenics, and targets the PI3-kinase/AKT/mTOR axis, commonly aberrant in these tumors.Patients and methodsWe analyzed safety and responses in 41 patients with gynecologic cancers treated as part of a Phase I study of bevacizumab and temsirolimus.ResultsMedian age of the 41 women was 60 years (range, 33-80 years); median number of prior systemic therapies was 4 (1-11). Grade 3 or 4 treatment-related toxicities included: thrombocytopenia (10%), mucositis (2%), hypertension (2%), hypercholesterolemia (2%), fatigue (7%), elevated aspartate aminotransferase (2%), and neutropenia (2%). Twenty-nine patients (71%) experienced no treatment-related toxicity greater than grade 2. Full FDA-approved doses of both drugs (bevacizumab 15mg/kg IV Q3weeks and temsirolimus 25mg IV weekly) were administered without dose-limiting toxicity. Eight patients (20%) achieved stable disease (SD) > 6 months and 7 patients (17%), a partial response (PR) [total = 15/41 patients (37%)]. Eight of 13 patients (62%) with high-grade serous histology (ovarian or primary peritoneal) achieved SD > 6 months/PR.ConclusionBevacizumab and temsirolimus was well tolerated. Thirty-seven percent of heavily-pretreated patients achieved SD > 6 months/PR, suggesting that this combination warrants further study
Dual EGFR inhibition in combination with anti-VEGF treatment in colorectal cancer.
Preclinical studies demonstrate that epidermal growth factor receptor (EGFR) signals through both kinase-dependent and independent pathways and that combining a small-molecule EGFR inhibitor, EGFR antibody, and/or anti-angiogenic agent is synergistic. We conducted a dose-escalation, phase I study combining erlotinib, cetuximab, and bevacizumab. The subset of patients with metastatic colorectal cancer was analyzed for safety and antitumor activity. Forty-one patients with heavily pretreated metastatic colorectal cancer received treatment on a range of dose levels. The most common treatment-related grade ≥2 adverse events were rash (68%), hypomagnesemia (37%), and fatigue (15%). Thirty of 34 patients (88%) treated at the full FDA-approved doses of all three drugs tolerated treatment without drug-related dose-limiting effects. Eleven patients (27%) achieved stable disease (SD) ≥6 months and three (7%) achieved a partial response (PR) (total SD>6 months/PR= 14 (34%)). Of the 14 patients with SD≥6 months/PR, eight (57%) had received prior sequential bevacizumab and cetuximab, two (5%) had received bevacizumab and cetuximab concurrently, and four (29%) had received prior bevacizumab but not cetuximab or erlotinib (though three had received prior panitumumab). The combination of bevacizumab, cetuximab, and erlotinib was well tolerated and demonstrated antitumor activity in heavily pretreated patients with metastatic colorectal cancer
Dual EGFR inhibition in combination with anti-VEGF treatment: a phase I clinical trial in non-small cell lung cancer.
BackgroundPreclinical data indicate EGFR signals through both kinase-dependent and independent pathways and that combining a small-molecule EGFR inhibitor, EGFR antibody, and/or anti-angiogenic agent is synergistic in animal models.MethodsWe conducted a dose-escalation, phase I study combining erlotinib, cetuximab, and bevacizumab. The subset of patients with non-small cell lung cancer (NSCLC) was analyzed for safety and response.ResultsThirty-four patients with NSCLC (median four prior therapies) received treatment on a range of dose levels. The most common treatment-related grade ≥2 adverse events were rash (n=14, 41%), hypomagnesemia (n=9, 27%), and fatigue (n=5, 15%). Seven patients (21%) achieved stable disease (SD) ≥6 months, two achieved a partial response (PR) (6%), and two achieved an unconfirmed partial response (uPR) (6%) (total=32%). We observed SD≥6 months/PR/uPR in patients who had received prior erlotinib and/or bevacizumab, those with brain metastases, smokers, and patients treated at lower dose levels. Five of 16 patients (31%) with wild-type EGFR experienced SD≥6 months or uPR. Correlation between grade of rash and rate of SD≥6 months/PR was observed (p less than 0.01).ConclusionThe combination of erlotinib, cetuximab, and bevacizumab was well-tolerated and demonstrated antitumor activity in heavily pretreated patients with NSCLC
PIK3CA mutations in advanced cancers: characteristics and outcomes.
PIK3CA mutations are frequently diagnosed in diverse cancers and may predict response to PI3K/AKT/mTOR inhibitors. It remains unclear whether they are associated with other characteristics. We analyzed characteristics and outcome of 90 consecutive patients with diverse advanced tumors and PIK3CA mutations and 180 wild-type PIK3CA controls matched by tumor type, gender, and age referred to the Clinical Center for Targeted Therapy. PIK3CA and MAPK mutations (KRAS, NRAS, and BRAF) were analyzed using polymerase chain reaction-based DNA sequencing. The most frequent PIK3CA mutations were E545K (31/90, 34%), E542K (16/90, 18%) in exon 9, and H1047R (20/90, 22%) in exon 20. PIK3CA mutations compared to wild-type PIK3CA were associated with simultaneous KRAS (p=0.047) and MAPK mutations (p=0.03), but only MAPK mutations were confirmed as having an independent association in multivariate analysis. Rates of lung, bone, liver and brain metastases were similar in PIK3CA-mutant and wild-type patients. Patients with PIK3CA mutations treated on trials with PI3K/AKT/mTOR inhibitors had a higher partial/complete response (PR/CR) rate than wild-type PIK3CA patients treated with their best phase I therapy (10/56, 18% vs. 12/152, 8%; p=0.045), but not a prolonged progression-free survival. Patients with H1047R PIK3CA mutations had higher PR/CR rate with PI3K/AKT/mTOR inhibitors compared to wild-type PIK3CA patients treated with their best phase I therapy (6/16, 38% vs. 12/152, 8%; p=0.003). In conclusion, PIK3CA mutations in diverse cancers were not associated with clinical characteristics, but were correlated with MAPK mutations. PIK3CA mutations, especially, H1047R, were associated with attaining a PR/CR to PI3K/AKT/mTOR pathway inhibitors
Phase I study of azacitidine and oxaliplatin in patients with advanced cancers that have relapsed or are refractory to any platinum therapy.
BackgroundDemethylation process is necessary for the expression of various factors involved in chemotherapy cytotoxicity or resistance. Platinum-resistant cells may have reduced expression of the copper/platinum transporter CTR1. We hypothesized that azacitidine and oxaliplatin combination therapy may restore platinum sensitivity. We treated patients with cancer relapsed/refractory to any platinum compounds (3 + 3 study design) with azacitidine (20 to 50 mg/m(2)/day intravenously (IV) over 15 to 30 min, D1 to 5) and oxaliplatin (15 to 30 mg/m(2)/day, IV over 2 h, D2 to 5) (maximum, six cycles). Platinum content, LINE1 methylation (surrogate of global DNA methylation), and CTR1 expression changes (pre- vs. post-treatment) were assessed. Drug pharmacokinetics were analyzed.ResultsThirty-seven patients were treated. No dose-limiting toxicity (DLT) was noted at the maximum dose. The most common adverse events were anemia and fatigue. Two (5.4%) patients had stable disease and completed six cycles of therapy. Oxaliplatin (D2) and azacitidine (D1 and 5) mean systemic exposure based on plasma AUCall showed dose-dependent interaction whereby increasing the dose of oxaliplatin reduced the mean azacitidine exposure and vice versa; however, no significant differences in other non-compartmental modeled parameters were observed. Blood samples showed universal reduction in global DNA methylation. In tumor samples, hypomethylation was only observed in four out of seven patients. No correlation between blood and tumor demethylation was seen. The mean cytoplasmic CTR1 score decreased. The pre-dose tumor oxaliplatin levels ranged from <0.25 to 5.8 μg/g tumor. The platinum concentration increased 3- to 18-fold. No correlation was found between CTR1 score and oxaliplatin level, which was found to have a trend toward correlation with progression-free survival.ConclusionsOxaliplatin and azacitidine combination therapy was safe. CTR1 expression was not correlated with methylation status or tissue platinum concentration
Anastrozole and everolimus in advanced gynecologic and breast malignancies: activity and molecular alterations in the PI3K/AKT/mTOR pathway.
BackgroundSince PI3K/AKT/mTOR pathway activation diminishes the effects of hormone therapy, combining aromatase inhibitors (anatrozole) with mTOR inhibitors (everolimus) was investigated.Patients and methodsWe evaluated anastrozole and everolimus in 55 patients with metastatic estrogen (ER) and/or progesterone receptor (PR)-positive breast and gynecologic tumors. Endpoints were safety, antitumor activity and molecular correlates.ResultsFull doses of anastrozole (1 mg PO daily) and everolimus (10 mg PO daily) were well tolerated. Twelve of 50 evaluable patients (24%) (median = 3 prior therapies) achieved stable disease (SD) ≥ 6 months/partial response (PR)/complete response (CR) (n = 5 (10%) with PR/CR): 9 of 32 (28%) with breast cancer (n=5 (16%) with PR/CR); 2 of 10 (20%), ovarian cancer; and 1 of 6 (17%), endometrial cancer. Six of 22 patients (27%) with molecular alterations in the PI3K/AKT/mTOR pathway achieved SD ≥ 6 months/PR/CR. Six of 8 patients (75%) with SD ≥ 6 months/PR/CR with molecular testing demonstrated at least one alteration in the PI3K/AKT/mTOR pathway: mutations in PIK3CA (n=3) and AKT1 (n=1) or PTEN loss (n=3). All three responders (CR (n = 1); PR (n=2)) who had next generation sequencing demonstrated additional alterations: amplifications in CCNE1, IRS2, MCL1, CCND1, FGFR1 and MYC and a rearrangement in PRKDC.ConclusionsCombination anastrozole and everolimus is well tolerated at full approved doses, and is active in heavily-pretreated patients with ER and/or PR-positive breast, ovarian and endometrial cancers. Responses were observed in patients with multiple molecular aberrations. CLINICAL TRAILS INCLUDED: NCT01197170
Antitumour activity of neratinib in patients with HER2-mutant advanced biliary tract cancers
Antitumour activity; Neratinib; Biliary tract cancersActividad antitumoral; Neratinib; Cánceres de vÃas biliaresActivitat antitumoral; Neratinib; Cà ncers de vies biliarsHER2 mutations are infrequent genomic events in biliary tract cancers (BTCs). Neratinib, an irreversible, pan-HER, oral tyrosine kinase inhibitor, interferes with constitutive receptor kinase activation and has activity in HER2-mutant tumours. SUMMIT is an open-label, single-arm, multi-cohort, phase 2, ‘basket’ trial of neratinib in patients with solid tumours harbouring oncogenic HER2 somatic mutations (ClinicalTrials.gov: NCT01953926). The primary objective of the BTC cohort, which is now complete, is first objective response rate (ORR) to neratinib 240 mg orally daily. Secondary objectives include confirmed ORR, clinical benefit rate, progression-free survival, duration of response, overall survival, safety and tolerability. Genomic analyses were exploratory. Among 25 treatment-refractory patients (11 cholangiocarcinoma, 10 gallbladder, 4 ampullary cancers), the ORR is 16% (95% CI 4.5–36.1%). The most common HER2 mutations are S310F (n = 11; 48%) and V777L (n = 4; 17%). Outcomes appear worse for ampullary tumours or those with co-occurring oncogenic TP53 and CDKN2A alterations. Loss of amplified HER2 S310F and acquisition of multiple previously undetected oncogenic co-mutations are identified at progression in one responder. Diarrhoea is the most common adverse event, with any-grade diarrhoea in 14 patients (56%). Although neratinib demonstrates antitumour activity in patients with refractory BTC harbouring HER2 mutations, the primary endpoint was not met and combinations may be explored.The SUMMIT trial was sponsored/funded by Puma Biotechnology, Inc. Investigators from MSKCC who participated in the trial were also supported in part by a Cancer Center Support Grant (P30 CA008748) and Cycle for Survival. Puma Biotechnology, Inc was involved in the following: study design; data collection, analysis and interpretation of the data; writing of the report; the decision to submit the article for publication. The authors would like to thank all patients and their families for participating in the SUMMIT trial. The authors acknowledge David Hyman (Memorial Sloan Kettering), Richard Bryce (Puma Biotechnology), and Alshad Lalani (Puma Biotechnology) for their important contributions to the original SUMMIT study design, oversight, and interpretation, and Feng Xu (Puma Biotechnology) and Jane Liang (Puma Biotechnology) for statistical and programming support. The authors also thank Lee Miller and Deirdre Carman (Miller Medical Communications Ltd) for medical writing/editing assistance, which was funded by Puma Biotechnology, Inc
Targeted therapy of advanced gallbladder cancer and cholangiocarcinoma with aggressive biology: eliciting early response signals from phase 1 trials.
PurposePatients with advanced cholangiocarcinoma (CC) and gallbladder carcinoma (GC) have few therapeutic options for relapsed disease. methods: Given the overall poor prognosis in this population and the availability of novel targeted therapies, we systematically analyzed the characteristics and outcomes for GC and CC patients treated on phase I trials with an emphasis on targeted agents and locoregional therapies.ResultsOf 40 treated patients (GC=6; CC=34; median age, 60 years), 8 (20%) had stable disease (SD) > 6 months, 3 (8%) partial response (PR), on protocols with hepatic arterial drug infusion and anti-angiogenic, anti-HER-2/neu or novel MAPK/ERK kinase (MEK) inhibitors. Median progression-free survival (PFS) on phase I trials was 2.0 months (95% CI 1.7, 2.8) versus 3.0 months (95% CI 2.4, 5.0), 3.0 months (95% CI 2.3, 4.6), and 3.0 months (95% CI 2.4, 3.9) for their first-, second-, and last-line FDA-approved therapy. In univariate analysis, >3 metastatic sites, elevated alanine aminotransferase (ALT) (>56IU/L), serum creatinine (>1.6mg/dL), and CA19-9 (>35U/mL) were associated with a shorter PFS. Mutational analysis revealed mutation in the KRAS oncogene in 2 of 11 patients (18%). The SD >6 months/PR rate of 28% was seen with hepatic arterial infusion of oxaliplatin, and inhibitors of angiogenesis, HER-2/neu or MEK.ConclusionsThe PFS in phase I trials was similar to that of the first, second, and last-line therapy (P=0.95, 0.98, 0.76, respectively) with FDA-approved agents given in the advanced setting, emphasizing a role for targeted agents in a clinical trials setting as potentially valuable therapeutic options for these patients
Outcomes of patients with advanced cancer and KRAS mutations in phase I clinical trials.
BackgroundKRAS mutation is common in human cancer. We assessed the clinical factors, including type of KRAS mutation and treatment, of patients with advanced cancer and tumor KRAS mutations and their association with treatment outcomes.MethodsPatients referred to the Phase I Clinic for treatment who underwent testing for KRAS mutations were analyzed.ResultsOf 1,781 patients, 365 (21%) had a KRAS mutation. The G12D mutation was the most common mutation (29%). PIK3CA mutations were found in 24% and 10% of patients with and without KRAS mutations (p<0.0001). Of 223 patients with a KRAS mutation who were evaluable for response, 56 were treated with a MEK inhibitor-containing therapy and 167 with other therapies. The clinical benefit (partial response and stable disease lasting ≥6 months) rates were 23% and 9%, respectively, for the MEK inhibitor versus other therapies (p=0.005). The median progression-free survival (PFS) was 3.3 and 2.2 months, respectively (p=0.09). The respective median overall survival was 8.4 and 7.0 months (p=0.38). Of 66 patients with a KRAS mutation and additional alterations, higher rates of clinical benefit (p=0.04), PFS (p=0.045), and overall survival (p=0.02) were noted in patients treated with MEK inhibitor-containing therapy (n=9) compared to those treated with targeted therapy matched to the additional alterations (n=24) or other therapy (n=33).ConclusionsMEK inhibitors in patients with KRAS-mutated advanced cancer were associated with higher clinical benefit rates compared to other therapies. Therapeutic strategies that include MEK inhibitors or novel agents combined with other targeted therapies or chemotherapy need further investigation
- …