33 research outputs found

    Quantification of domestic cat hepadnavirus DNA in various body fluid specimens of cats: the potential viral shedding routes

    Get PDF
    Domestic cat hepadnavirus (DCH) belongs to the Hepadnaviridae family together with human hepatitis B virus (HBV) that remains to be a major health problem worldwide. The transmission of HBV infectious virion has been one of the essential factors that contribute to high number of HBV infection in humans. It has been long known that various body fluid specimens of human with chronic HBV infection contain HBV DNA and demonstrated to be infectious. In contrast to this knowledge, the detection of DCH in various body fluid specimens of cats, has not been reported. This study explored the detection of DCH DNA in various body fluid specimens of cats by quantitative polymerase chain reaction (qPCR) and investigated whether the detection of DCH DNA from broader routes was correlated with any genomic diversity by phylogenetic analysis. A total of 1,209 body fluid specimens were included, and DCH DNA was detected not only in 4.70% (25/532) of blood samples; but also in 12.5% (1/8), 1.14% (1/88), 2.54% (10/394), and 1.65% (3/182) of auricular swab (AS), nasal swab (NS), oral swab (OS), and rectal swab (RS) specimens, respectively. Furthermore, the level of DCH DNA detected in the blood was significantly correlated with DCH DNA detection in OS (P = 0.02) and RS (P = 0.04) specimens. Genomic analysis revealed that there was no notable genomic diversity within the complete genome sequences obtained in this study. In conclusion, this study highlighted the presence of DCH DNA in various body fluid specimens of cats, and the potential role of these specimens in DCH horizontal transmission within the cat population warrants further studies

    Genetic characterization of canine astrovirus in non-diarrhea dogs and diarrhea dogs in Vietnam and Thailand reveals the presence of a unique lineage

    Get PDF
    The role of canine astrovirus (CaAstV) in canine gastrointestinal disease (GID) is unknown. In this study, a total of 327 fecal swab (FS) samples were collected, including 113 FSs in Vietnam (46 samples from healthy dogs and 67 samples from GID dogs) and 214 FSs in Thailand (107 samples from healthy dogs and 107 samples from GID dogs). Overall, the prevalence of CaAstV in Vietnam and Thailand was 25.7% (29/113) and 8.9% (19/214), respectively. CaAstV was detected in both non-diarrhea dogs (21.7 and 7.5%) and diarrhea dogs (28.4% and 10.3%), respectively, in Vietnam and Thailand. In both countries, CaAstV was frequently detected in puppies under 6 months of age (23.3%) (p = 0.02). CaAstV-positive samples in Vietnam and Thailand were identified as co-infected with canine parvovirus, canine enteric coronavirus, canine distemper virus, and canine kobuvirus. The complete coding sequence of seven Vietnamese CaAstV and two Thai CaAstV strains were successfully characterized. Phylogenetic analyses showed that Vietnamese and Thai CaAstV strains were genetically close to each other and related to the Chinese strains. Furthermore, analysis of complete coding sequences indicated that the OR220030_G21/Thailand/2021 strain formed a unique lineage, whereas no recombination event was found in this study, suggesting that this strain might be an original lineage. In summary, this is the first study to report the presence of CaAstV in dogs with and without diarrhea in Vietnam and Thailand, and it was most often found in puppies with diarrhea. Our results highlight the importance of the CaAstV in dog populations and the need for continued surveillance of these emerging pathogens

    Table_1_Genetic characterization of canine astrovirus in non-diarrhea dogs and diarrhea dogs in Vietnam and Thailand reveals the presence of a unique lineage.DOCX

    No full text
    The role of canine astrovirus (CaAstV) in canine gastrointestinal disease (GID) is unknown. In this study, a total of 327 fecal swab (FS) samples were collected, including 113 FSs in Vietnam (46 samples from healthy dogs and 67 samples from GID dogs) and 214 FSs in Thailand (107 samples from healthy dogs and 107 samples from GID dogs). Overall, the prevalence of CaAstV in Vietnam and Thailand was 25.7% (29/113) and 8.9% (19/214), respectively. CaAstV was detected in both non-diarrhea dogs (21.7 and 7.5%) and diarrhea dogs (28.4% and 10.3%), respectively, in Vietnam and Thailand. In both countries, CaAstV was frequently detected in puppies under 6 months of age (23.3%) (p = 0.02). CaAstV-positive samples in Vietnam and Thailand were identified as co-infected with canine parvovirus, canine enteric coronavirus, canine distemper virus, and canine kobuvirus. The complete coding sequence of seven Vietnamese CaAstV and two Thai CaAstV strains were successfully characterized. Phylogenetic analyses showed that Vietnamese and Thai CaAstV strains were genetically close to each other and related to the Chinese strains. Furthermore, analysis of complete coding sequences indicated that the OR220030_G21/Thailand/2021 strain formed a unique lineage, whereas no recombination event was found in this study, suggesting that this strain might be an original lineage. In summary, this is the first study to report the presence of CaAstV in dogs with and without diarrhea in Vietnam and Thailand, and it was most often found in puppies with diarrhea. Our results highlight the importance of the CaAstV in dog populations and the need for continued surveillance of these emerging pathogens.</p

    Table_2_Genetic characterization of canine astrovirus in non-diarrhea dogs and diarrhea dogs in Vietnam and Thailand reveals the presence of a unique lineage.XLSX

    No full text
    The role of canine astrovirus (CaAstV) in canine gastrointestinal disease (GID) is unknown. In this study, a total of 327 fecal swab (FS) samples were collected, including 113 FSs in Vietnam (46 samples from healthy dogs and 67 samples from GID dogs) and 214 FSs in Thailand (107 samples from healthy dogs and 107 samples from GID dogs). Overall, the prevalence of CaAstV in Vietnam and Thailand was 25.7% (29/113) and 8.9% (19/214), respectively. CaAstV was detected in both non-diarrhea dogs (21.7 and 7.5%) and diarrhea dogs (28.4% and 10.3%), respectively, in Vietnam and Thailand. In both countries, CaAstV was frequently detected in puppies under 6 months of age (23.3%) (p = 0.02). CaAstV-positive samples in Vietnam and Thailand were identified as co-infected with canine parvovirus, canine enteric coronavirus, canine distemper virus, and canine kobuvirus. The complete coding sequence of seven Vietnamese CaAstV and two Thai CaAstV strains were successfully characterized. Phylogenetic analyses showed that Vietnamese and Thai CaAstV strains were genetically close to each other and related to the Chinese strains. Furthermore, analysis of complete coding sequences indicated that the OR220030_G21/Thailand/2021 strain formed a unique lineage, whereas no recombination event was found in this study, suggesting that this strain might be an original lineage. In summary, this is the first study to report the presence of CaAstV in dogs with and without diarrhea in Vietnam and Thailand, and it was most often found in puppies with diarrhea. Our results highlight the importance of the CaAstV in dog populations and the need for continued surveillance of these emerging pathogens.</p

    Molecular detection and genetic characterization of porcine circovirus 4 (PCV4) in Thailand during 2019–2020

    No full text
    Abstract Porcine circovirus 4 (PCV4) is considered a novel PCV, firstly found in China in 2019 and later discovered in Korea. This present study investigated the prevalence and genetic characteristics of PCV4 from high pig-density areas in Thailand during 2019–2020. From 734 samples, three samples (0.4%) from aborted fetuses and porcine respiratory disease complex (PRDC) cases were found positive for PCV4, two of the PCV4-positive samples were coinfected with both PCV2 and PRRSV, and the other PCV4-positive sample was found coinfected with PCV2. In situ hybridization (ISH) revealed the presence of PCV4 in the bronchial epithelial cells and in lymphocytes and histiocyte-like cells in the lymphoid follicles of the PRDC-affected pig. The complete Thai PCV4 genome had over 98% nucleotide identity with other PCV4 strains and was closely related to the Korean and Chinese PCV4b strains. Importantly, the amino acid residue at position 212 of the Cap gene is recommended for differentiating PCV4a (212L) from PCV4b (212M) based on currently available PCV4 genome sequences. These findings provide important clues for the pathogenesis, epidemiology, and genetic characteristics of PCV4 in Thailand

    Carnivore chaphamaparvovirus-1 (CaChPV-1) infection in diarrheic dogs reveals viral endotheliotropism in intestine and lung

    No full text
    AbstractBackground Carnivore chaphamaparvovirus-1 (CaChPV-1) is a parvovirus identified in dogs and association of infection with diarrhea is controversial. Information on whether tissue tropism persists is lacking.Objectives To determine the disease association of CaChPV-1 in dogs with diarrhea and to investigate viral tropism and genetic diversity.Animals and methods CaChPV-1 infection was investigated in five recently deceased puppies and designed a retrospective study to determine whether the presence of CaChPV-1 is associated with diarrhea. The retrospective study was conducted in 137 intestinal tissue samples and 168 fecal samples obtained from 305 dogs. CaChPV-1 tissue localization was determined using in situ hybridization, and CaChPV-1 complete genomes obtained from dead puppies and retrospective study were sequenced and analyzed.Results CaChPV-1 was detected in 6.56% (20/305) of tested dogs, including 14 diarrheic- and 6 non-diarrheic dogs, and was significant in puppies with diarrhea (P = 0.048). Among the CaChPV-1-positive diarrheic dogs, one sample was obtained from intestinal tissue and 13 samples were fecal samples. However, six CaChPV-1 positive non-diarrheic dogs were based on fecal samples but not on intestinal tissue. Within the age range, the presence of CaChPV-1 was significant in puppies (P < 0.00001) and was mainly localized in the stromal and endothelial cells of intestinal villi and pulmonary alveoli. Phylogenetic analysis indicated genetic diversity of CaChPV-1 Thai strains that were mostly clustered within the sequences found in China.Conclusions Although definitive pathogenesis of CaChPV-1 remains undetermined, this study provides evidence supporting that CaChPV-1 localizes in canine cells and could play a potential role as an enteric pathogen

    Insights into the genetic diversity, recombination, and systemic infections with evidence of intracellular maturation of hepadnavirus in cats.

    No full text
    Hepatitis B virus (HBV) is a human pathogen of global concern, while a high diversity of viruses related to HBV have been discovered in other animals during the last decade. Recently, the novel mammalian hepadnavirus, tentatively named domestic cat hepadnavirus (DCH), was detected in an immunocompromised cat. Herein, a collection of 209 cat sera and 15 hepato-diseased cats were screened for DCH using PCR, resulting in 12.4% and 20% positivity in the tested sera and necropsied cats, respectively. Among the DCH-positive sera, a significantly high level of co-detection with retroviral infection was found, with the highest proportion being co-detection with feline immunodeficiency virus (FIV). Full-length genome characterization of DCH revealed the genetic diversity between the nine Thai DCH sequences obtained, and that they phylogenetically formed three distinct monophyletic clades. A putative DCH recombinant strain was found, suggesting a possible role of recombination in DCH evolution. Additionally, quantitative PCR was used to determine the viral copy number in various organs of the DCH-moribund cats, while the pathological findings were compared to the viral localization in hepatocytes, adjacent to areas of hepatic fibrosis, by immunohistochemical (IHC) and western blot analysis. In addition to the liver, positive-DCH immunoreactivity was found in various other organs, including kidneys, lung, heart, intestine, brain, and lymph nodes, providing evidence of systemic infection. Ultrastructure of infected cells revealed electron-dense particles in the nucleus and cytoplasm of hepatocytes, bronchial epithelial cells, and fibroblasts. We propose the intracellular development mechanism of this virus. Although the definitive roles of pathogenicity of DCH remains undetermined, a contributory role of the virus associated with systemic diseases is possible
    corecore