18 research outputs found

    Advanced Imaging in Multiple Myeloma: New Frontiers for MRI

    No full text
    Plasma cell dyscrasias are estimated to newly affect almost 40,000 people in 2022. They fall on a spectrum of diseases ranging from relatively benign to malignant, the malignant end of the spectrum being multiple myeloma (MM). The International Myeloma Working Group (IMWG) has traditionally outlined the diagnostic criteria and therapeutic management of MM. In the last two decades, novel imaging techniques have been employed for MM to provide more information that can guide not only diagnosis and staging, but also treatment efficacy. These imaging techniques, due to their low invasiveness and high reliability, have gained significant clinical attention and have already changed the clinical practice. The development of functional MRI sequences such as diffusion weighted imaging (DWI) or intravoxel incoherent motion (IVIM) has made the functional assessment of lesions feasible. Moreover, the growing availability of positron emission tomography (PET)–magnetic resonance imaging (MRI) scanners is leading to the potential combination of sensitive anatomical and functional information in a single step. This paper provides an organized framework for evaluating the benefits and challenges of novel and more functional imaging techniques used for the management of patients with plasma cell dyscrasias, notably MM

    Duodenocaval Fistula in a Patient with Inferior Vena Cava Leiomyosarcoma Treated by Surgical Resection and Caval Polytetrafluoroethylene Prosthesis

    No full text
    Inferior vena cava (IVC) leiomyosarcoma represents an extremely rare disease that commonly involves the segment between the inflow of the renal veins and the inflow of the hepatic veins (46% of cases). We report the case of a patient affected by an IVC leiomyosarcoma, treated with surgical resection, caval reconstruction with polytetrafluoroethylene (PTFE), and right nephrectomy, followed by external beam radiotherapy. Oncological follow-up was negative for 17 years after this combined treatment, since the patient developed a duodenocaval fistula (DCF)

    Diagnostic Value of Semiquantitative Analysis of Dynamic Susceptibility Contrast Magnetic Resonance Imaging with GD-EOB-DTPA in Focal Liver Lesions Characterization: A Feasibility Study

    No full text
    . Purpose. To assess the diagnostic accuracy of dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSCE-MRI) in differentiation between benign and malignant liver lesions by assessment of tumoral perfusion parameters. Methods Materials. Seventy-three patients with known focal liver lesions, including 45 benign (16 FNH, 27 angiomas, and 2 abscesses) and 28 malignant ones (17 metastases, 9 HCCs, and 2 cholangiocarcinoma) underwent 1.5 T MRI upper abdominal study, with standard protocol that included dynamic contrast-enhanced sequences. On dedicated workstation, time-intensity curves were determined and the following perfusion parameters were calculated: relative arterial, venous and late enhancement (RAE, RVE, RLE), maximum enhancement (ME), relative enhancement (RE), and time to peak (TTP). Results. All diagnoses were established either by histopathology or imaging follow-up. Perfusion mean values calculated in benign lesions were RAE 33.8%, RVE 66.03%, RLE 80.63%, ME 776.00%, MRE 86.27%, and TTP 146.95 sec. Corresponding perfusion values calculated in malignant lesions were RAE 22.47%, RVE 40.54%, RLE 47.52%, ME 448.78%, MRE 49.85%, and TTP 183.79 sec. Statistical difference ( < 0.05) was achieved in all the perfusion parameters calculated, obtaining different cluster of perfusion kinetics between benign and malignant lesions. Conclusions. DSCE-MRI depicts kinetic differences in perfusion parameters among the different common liver lesions, related to tumour supply and microvascular characteristics

    Diagnostic Value of Semiquantitative Analysis of Dynamic Susceptibility Contrast Magnetic Resonance Imaging with GD-EOB-DTPA in Focal Liver Lesions Characterization: A Feasibility Study

    No full text
    Purpose. To assess the diagnostic accuracy of dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSCE-MRI) in differentiation between benign and malignant liver lesions by assessment of tumoral perfusion parameters. Methods Materials. Seventy-three patients with known focal liver lesions, including 45 benign (16 FNH, 27 angiomas, and 2 abscesses) and 28 malignant ones (17 metastases, 9 HCCs, and 2 cholangiocarcinoma) underwent 1.5 T MRI upper abdominal study, with standard protocol that included dynamic contrast-enhanced sequences. On dedicated workstation, time-intensity curves were determined and the following perfusion parameters were calculated: relative arterial, venous and late enhancement (RAE, RVE, RLE), maximum enhancement (ME), relative enhancement (RE), and time to peak (TTP). Results. All diagnoses were established either by histopathology or imaging follow-up. Perfusion mean values calculated in benign lesions were RAE 33.8%, RVE 66.03%, RLE 80.63%, ME 776.00%, MRE 86.27%, and TTP 146.95 sec. Corresponding perfusion values calculated in malignant lesions were RAE 22.47%, RVE 40.54%, RLE 47.52%, ME 448.78%, MRE 49.85%, and TTP 183.79 sec. Statistical difference (p<0.05) was achieved in all the perfusion parameters calculated, obtaining different cluster of perfusion kinetics between benign and malignant lesions. Conclusions. DSCE-MRI depicts kinetic differences in perfusion parameters among the different common liver lesions, related to tumour supply and microvascular characteristics

    Arterioportal Fistulas (APFs) in Pediatric Patients: Single Center Experience with Interventional Radiological versus Conservative Management and Clinical Outcomes

    No full text
    Arterioportal fistulas (APFs) are uncommon vascular abnormalities with a heterogeneous etiology. In pediatric orthotopic liver transplantation (OLT), APFs are frequently iatrogenic, following percutaneous liver interventions. The aim of this study was to report the 10-year experience of a tertiary referral center for pediatric OLT in the interventional radiological (IR) and conservative management of acquired APFs. A retrospective search was performed to retrieve pediatric patients (&lt;18 years old) with a diagnosis of APF at color Doppler ultrasound (CDUS) or computed tomography angiography (CTA) from 2010 to 2020. Criteria for IR treatment were the presence of hemodynamic alterations at CDUS (resistive index &lt;0.5; portal flow reversal) or clinical manifestations (bleeding; portal hypertension). Conservatively managed patients served as a control population. Clinical and imaging follow-up was analyzed. Twenty-three pediatric patients (median age, 4 years; interquartile range = 11 years; 15 males) with 24 APFs were retrieved. Twenty patients were OLT recipients with acquired APFs (16 iatrogenic). Twelve out of twenty-three patients were managed conservatively. The remaining 11 underwent angiography with confirmation of a shunt in 10, who underwent a total of 16 embolization procedures (14 endovascular; 2 transhepatic). Technical success was reached in 12/16 (75%) procedures. Clinical success was achieved in 8/11 (73%) patients; three clinical failures resulted in one death and two OLTs. After a median follow-up time of 42 months (range 1-107), successfully treated patients showed an improvement in hemodynamic parameters at CDUS. Conservatively managed patients showed a stable persistence of the shunts in six cases, spontaneous resolution in four, reduction in one and mild shunt increase in one. In pediatric patients undergoing liver interventions, APFs should be investigated. Although asymptomatic in most cases, IR treatment of APFs should be considered whenever hemodynamic changes are found at CDUS

    Radiomics in PI-RADS 3 Multiparametric MRI for Prostate Cancer Identification: Literature Models Re-Implementation and Proposal of a Clinical&ndash;Radiological Model

    No full text
    PI-RADS 3 prostate lesions clinical management is still debated, with high variability among different centers. Identifying clinically significant tumors among PI-RADS 3 is crucial. Radiomics applied to multiparametric MR (mpMR) seems promising. Nevertheless, reproducibility assessment by external validation is required. We retrospectively included all patients with at least one PI-RADS 3 lesion (PI-RADS v2.1) detected on a 3T prostate MRI scan at our Institution (June 2016&ndash;March 2021). An MRI-targeted biopsy was used as ground truth. We assessed reproducible mpMRI radiomic features found in the literature. Then, we proposed a new model combining PSA density and two radiomic features (texture regularity (T2) and size zone heterogeneity (ADC)). All models were trained/assessed through 100-repetitions 5-fold cross-validation. Eighty patients were included (26 with GS &ge; 7). In total, 9/20 T2 features (Hector&rsquo;s model) and 1 T2 feature (Jin&rsquo;s model) significantly correlated to biopsy on our dataset. PSA density alone predicted clinically significant tumors (sensitivity: 66%; specificity: 71%). Our model obtained a sensitivity of 80% and a specificity of 76%. Standard-compliant works with detailed methodologies achieve comparable radiomic feature sets. Therefore, efforts to facilitate reproducibility are needed, while complex models and imaging protocols seem not, since our model combining PSA density and two radiomic features from routinely performed sequences appeared to differentiate clinically significant cancers

    Structural and Functional Pulmonary Assessment in Severe COVID-19 Survivors at 12 Months after Discharge

    No full text
    Long-term pulmonary sequelae in COVID-19 patients are currently under investigation worldwide. Potential relationships between blood sampling and functional and radiological findings are crucial to guide the follow-up. In this study, we collected and evaluated clinical status, namely symptoms and patients&rsquo; reported outcome, pulmonary function tests (PFT), laboratory tests, and radiological findings at 3- and 12-months post-discharge in patients admitted between 25 February and 2 May 2020, and who survived severe COVID-19 pneumonia. A history of chronic pulmonary disease or COVID-19-unrelated complications were used as exclusion criteria. Unenhanced CTs were analyzed quantitatively (compromising lung volume %) and qualitatively, with main patterns of: ground-glass opacity (GGO), consolidation, and reticular configuration. Patients were subsequently divided into groups based on their radiological trends and according to the evolution in the percentage of compromised lung volume. At 12 months post-discharge, seventy-one patients showed significantly improved laboratory tests and PFT. Among them, 63 patients also underwent CT examination: all patients with negative CT findings at three months (n = 14) had negative CT also at 12 months; among the 49/63 patients presenting CT alterations at three months, 1/49 (2%) normalized, 40/49 (82%) improved, 7/49 (14%) remained stably abnormal, and 1/49 (2%) worsened. D-dimer values were low in patients with normal CT and higher in cases with improved or stably abnormal CT (median values 213 vs. 329 vs. 1000 ng/mL, respectively). The overall compromised lung volume was reduced compared with three months post-discharge (12.3 vs. 14.4%, p &lt; 0.001). In stably abnormal CT, the main pulmonary pattern changed, showing a reduction in GGO and an increase in reticular configuration. To summarize, PFT are normal in most COVID-19 survivors 12 months post-discharge, but CT structural abnormalities persist (although sensibly improved over time) and are associated with higher D-dimer values

    Superb Microvascular Imaging (SMI) Compared with Color Doppler Ultrasound for the Assessment of Hepatic Artery in Pediatric Liver Transplants: A Feasibility Study

    No full text
    (1) Background: Despite progression in surgical techniques and immunological treatments, hepatic artery (HA) thrombosis and stenosis still develop as an early or late liver transplant (LT) complication. We aimed to compare superb microvascular imaging (SMI) with conventional Doppler imaging (CDI) in the assessment of HA in a cohort of pediatric patients undergoing follow-up ultrasound (US) for LT. (2) Methods: This prospective, observational study included 73 pediatric LT recipients (median age, 7 years; IQR, 5.8 years; 35 females) who underwent US during LT follow-up from March to December 2019. For each examination, CDI and SMI were separately assessed in terms of HA visibility and spectral waveform morphology (SWM). The former was scored based on HA discrimination from the blooming signal of the surrounding vessels, as follows: 0, not visible; 1, majority course hardly distinguishable; and 2, majority course clearly distinguishable. The latter was scored on a two-point scale: 0, combined venous and arterial SWM, and 1, pure arterial SWM. The patient&rsquo;s overall score was finally calculated by adding the two individual scores. (3) Results: Both the absolute scores and frequency of overall scores equal to 3 (maximum global score) were higher using SMI compared with CDI. The median overall score was 3 for SMI and 2 for CDI (p = 0.011; IQR = 1). An overall score equal to 3 was obtained in 74% and 49.3% of the study population using SMI and CDI, respectively (p = 0.002). This was attributable to a better score in HA visibility (p = 0.007). (4) Conclusions: SMI has shown promise for assessing HA in pediatric LT recipients, possibly serving as a complementary non-invasive tool of CDI in everyday practice
    corecore