22 research outputs found

    Adhesion of asexual and sexual stages of 3D7 on TNF-alpha stimulated HDMEC, HUVEC and HBMEC cell lines.

    No full text
    <p>Static assays were carried out as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031567#s4" target="_blank">Material and methods</a> section. The mean number of iRBC per mm<sup>2</sup> ± S.E. of 3 to 5 biological replicates were counted, and are expressed as % of bound parasites per mm<sup>2</sup> of the ItG control.</p

    Adhesion of asexual and sexual stages of AQ104 and 3D7 on TNF-alpha stimulated HDMEC, HUVEC and HBMEC cell lines.

    No full text
    <p>Static assays were carried out as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031567#s4" target="_blank">Material and methods</a> section. Values are expressed as % of bound parasites per mm<sup>2</sup> of the ItG control. Data shown are the mean number of iRBC per mm<sup>2</sup> ± S.E. of at least 3 biological replicates was counted and expressed as % of bound parasites per mm<sup>2</sup> of the ItG control.</p

    Adhesion of asexual stages of ItG and 3D7 on stimulated and non stimulated HDMEC, HUVEC and HBMEC endothelial cell lines.

    No full text
    <p>A) Data shown are the mean number of iRBC per mm<sup>2</sup> ± S.E. of 3 to 5 biological replicates. Static assays were carried out as described in the <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031567#s4" target="_blank">Material and Methods</a> section. B) Giemsa-stained infected erythrocytes bound to TNF-alpha activated endothelial cells (HDMEC). Scale bar: 25 µm.</p

    Additional file 1 of Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage

    No full text
    Figure S1. Immunofluorescence analysis of 3D7 and HB3 gametocytes with antibodies against PfGEXP5, Pfg27 and GST. Figure S2. Analysis of the production of endogenous or GFP-fused PfGEXP5 in asexual stages. Figure S3. pfgexp5 transcriptional profile in PfAP2G− and PfAP2G+ parasites

    The <i>Plasmodium falciparum</i> Schizont Phosphoproteome Reveals Extensive Phosphatidylinositol and cAMP-Protein Kinase A Signaling

    No full text
    The asexual blood stages of <i>Plasmodium falciparum</i> cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of <i>P. falciparum</i> schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion

    The <i>Plasmodium falciparum</i> Schizont Phosphoproteome Reveals Extensive Phosphatidylinositol and cAMP-Protein Kinase A Signaling

    No full text
    The asexual blood stages of <i>Plasmodium falciparum</i> cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of <i>P. falciparum</i> schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion

    The <i>Plasmodium falciparum</i> Schizont Phosphoproteome Reveals Extensive Phosphatidylinositol and cAMP-Protein Kinase A Signaling

    No full text
    The asexual blood stages of <i>Plasmodium falciparum</i> cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of <i>P. falciparum</i> schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion

    The <i>Plasmodium falciparum</i> Schizont Phosphoproteome Reveals Extensive Phosphatidylinositol and cAMP-Protein Kinase A Signaling

    No full text
    The asexual blood stages of <i>Plasmodium falciparum</i> cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of <i>P. falciparum</i> schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion

    The <i>Plasmodium falciparum</i> Schizont Phosphoproteome Reveals Extensive Phosphatidylinositol and cAMP-Protein Kinase A Signaling

    No full text
    The asexual blood stages of <i>Plasmodium falciparum</i> cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of <i>P. falciparum</i> schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion

    The <i>Plasmodium falciparum</i> Schizont Phosphoproteome Reveals Extensive Phosphatidylinositol and cAMP-Protein Kinase A Signaling

    No full text
    The asexual blood stages of <i>Plasmodium falciparum</i> cause the most lethal form of human malaria. During growth within an infected red blood cell, parasite multiplication and formation of invasive merozoites is called schizogony. Here, we present a detailed analysis of the phosphoproteome of <i>P. falciparum</i> schizonts revealing 2541 unique phosphorylation sites, including 871 novel sites. Prominent roles for cAMP-dependent protein kinase A- and phosphatidylinositol-signaling were identified following analysis by functional enrichment, phosphoprotein interaction network clustering and phospho-motif identification tools. We observed that most key enzymes in the inositol pathway are phosphorylated, which strongly suggests additional levels of regulation and crosstalk with other protein kinases that coregulate different biological processes. A distinct pattern of phosphorylation of proteins involved in merozoite egress and red blood cell invasion was noted. The analyses also revealed that cAMP-PKA signaling is implicated in a wide variety of processes including motility. We verified this finding experimentally using an in vitro kinase assay and identified three novel PKA substrates associated with the glideosome motor complex: myosin A, GAP45 and CDPK1. Therefore, in addition to an established role for CDPK1 in the motor complex, this study reveals the coinvolvement of PKA, further implicating cAMP as an important regulator of host cell invasion
    corecore