2,268 research outputs found

    Peroxisome Proliferator-Activated Receptor Delta: A Conserved Director of Lipid Homeostasis through Regulation of the Oxidative Capacity of Muscle

    Get PDF
    The peroxisome proliferator-activated receptors (PPARs), which are ligand-inducible transcription factors expressed in a variety of tissues, have been shown to perform key roles in lipid homeostasis. In physiological situations such as fasting and physical exercise, one PPAR subtype, PPARδ, triggers a transcriptional program in skeletal muscle leading to a switch in fuel usage from glucose/fatty acids to solely fatty acids, thereby drastically increasing its oxidative capacity. The metabolic action of PPARδ has also been verified in humans. In addition, it has become clear that the action of PPARδ is not restricted to skeletal muscle. Indeed, PPARδ has been shown to play a crucial role in whole-body lipid homeostasis as well as in insulin sensitivity, and it is active not only in skeletal muscle (as an activator of fat burning) but also in the liver (where it can activate glycolysis/lipogenesis, with the produced fat being oxidized in muscle) and in the adipose tissue (by incrementing lipolysis). The main aim of this review is to highlight the central role for activated PPARδ in the reversal of any tendency toward the development of insulin resistance

    Clinical aspects of glucocorticoid sensitivity

    Get PDF
    Recent studies demonstrate that primary (hereditary) abnormalities in the glucocorticoid receptor gene make 6.6% of the normal population relatively 'hypersensitive' to glucocorticoids, while 2.3% are relatively 'resistant.' These abnormalities might explain why some individuals develop severe adverse effects during low dose glucocorticoid therapy, while others do not develop side effects even during long-term therapy with a much higher dose. Awareness of this heterogeneity in glucocorticoid sensitivity in the normal population might eventually allow the prediction of a 'safe' dose of glucocorticoid in individual patients. 'Resistance' to the beneficial clinical effects of glucocorticoid therapy in part of the patients with severe rheumatoid arthritis and asthma is probably rarely related to generalized primary (hereditary) glucocorticoid resistance. In the majority of patients this 'resistance' seems to be acquired and localized to the sites of inflammation, where it reflects high local cytokine production, which interferes with glucocorticoid action. Recognition of localized, acquired glucocorticoid resistance is of great importance indicating as alternative drug therapy with other immune-modulating drugs like cyclosporin and methotrexate. Chronic high dose glucocorticoid treatment in such patients is ineffective in alleviating symptomatology, while generalized side effects occur, reflecting the patient's normal systemic sensitivity to these drugs

    Expression in hematological malignancies of a glucocorticoid receptor splice variant that augments glucocorticoid receptor-mediated effects in transfected cells

    Get PDF
    Glucocorticoids play an important role in the treatment of a number of hematological malignancies, such as multiple myeloma. The effects of glucocorticoids are mediated through the glucocorticoid receptor alpha, the abundance of which can be modulated by alternative splicing of the glucocorticoid receptor mRNA. Two splice variants of the glucocorticoid receptor mRNA have been described: glucocorticoid receptor beta, which reportedly has a dominant negative effect on the actions of the glucocorticoid receptor alpha, and glucocorticoid receptor P, of which the effects are unknown. In this study, we have investigated the expression levels of these two splice variants at the mRNA level in multiple myeloma cells and in a number of other hematological tumors. Although the glucocorticoid receptor beta mRNA was, if at all, expressed at very low levels, considerable amounts (up to 50% of the total glucocorticoid receptor mRNA) glucocorticoid receptor P mRNA was present in most hematological malignancies. In transient transfection studies in several cell types and in multiple myeloma cell lines, the glucocorticoid receptor P increased the activity of the glucocorticoid receptor alpha. These results suggest that the relative levels of the glucocorticoid receptor alpha and the glucocorticoid receptor P may play a role in the occurrence of glucocorticoid resistance in tumor cells during the treatment of hematological malignancies with glucocorticoids

    Studies of Complex Biological Systems with Applications to Molecular Medicine: The Need to Integrate Transcriptomic and Proteomic Approaches

    Get PDF
    Omics approaches to the study of complex biological systems with potential applications to molecular medicine are attracting great interest in clinical as well as in basic biological research. Genomics, transcriptomics and proteomics are characterized by the lack of an a priori definition of scope, and this gives sufficient leeway for investigators (a) to discern all at once a globally altered pattern of gene/protein expression and (b) to examine the complex interactions that regulate entire biological processes. Two popular platforms in “omics” are DNA microarrays, which measure messenger RNA transcript levels, and proteomic analyses, which identify and quantify proteins. Because of their intrinsic strengths and weaknesses, no single approach can fully unravel the complexities of fundamental biological events. However, an appropriate combination of different tools could lead to integrative analyses that would furnish new insights not accessible through one-dimensional datasets. In this review, we will outline some of the challenges associated with integrative analyses relating to the changes in metabolic pathways that occur in complex pathophysiological conditions (viz. ageing and altered thyroid state) in relevant metabolically active tissues. In addition, we discuss several new applications of proteomic analysis to the investigation of mitochondrial activity

    Differential hormone-dependent transcriptional activation and -repression by naturally occurring human glucocorticoid receptor variants

    Get PDF
    The molecular mechanisms underlying primary glucocorticoid resistance or hypersensitivity are not well understood. Using transfected COS-1 cells as a model system, we studied gene regulation by naturally occurring mutants of the glucocorticoid receptor (GR) with single-point mutations in the regions encoding the ligand-binding domain or the N-terminal domain reflecting different phenotypic expression. We analyzed the capacity of these GR variants to regulate transcription from different promoters, either by binding directly to positive or negative glucocorticoid-response elements on the DNA or by interfering with protein-protein interactions. Decreased dexamethasone (DEX) binding to GR variants carrying mutations in the ligand-binding domain correlated well with decreased capacity to activate transcription from the mouse mammary tumor virus (MMTV) promoter. One variant, D641V, which suboptimally activated MMTV promoter-mediated transcription, repressed a PRL promoter element containing a negative glucocorticoid-response element with wild type activity. DEX-induced repression of transcription from elements of the intercellular adhesion molecule-1 promoter via nuclear factor-kappaB by the D641V variant was even more efficient compared with the wild type GR. We observed a general DEX-responsive AP-1-mediated transcriptional repression of the collagenase-1 promoter, even when receptor variants did not activate transcription from the MMTV promoter. Our findings indicate that different point mutations in the GR can affect separate pathways of gene regulation in a differential fashion, which can explain the various phenotypes observed
    corecore