10 research outputs found
Oral prednisolone suppresses skin inflammation in a healthy volunteer imiquimod challenge model
Imiquimod (IMQ) is a topical agent that induces local inflammation via the Toll-like receptor 7 pathway. Recently, an IMQ-driven skin inflammation model was developed in healthy volunteers for proof-of-pharmacology trials. The aim of this study was to profile the cellular, biochemical, and clinical effects of the marketed anti-inflammatory compound prednisolone in an IMQ model. This randomized, double-blind, placebo-controlled study was conducted in 24 healthy volunteers. Oral prednisolone (0.25 mg/kg/dose) or placebo (1:1) was administered twice daily for 6 consecutive days. Two days after treatment initiation with prednisolone or placebo, 5 mg imiquimod (IMQ) once daily for two following days was applied under occlusion on the tape-stripped skin of the back for 48 h in healthy volunteers. Non-invasive (imaging and biophysical) and invasive (skin punch biopsies and blister induction) assessments were performed, as well as IMQ ex vivo stimulation of whole blood. Prednisolone reduced blood perfusion and skin erythema following 48 h of IMQ application (95% CI [−26.4%, −4.3%], p = 0.0111 and 95% CI [−7.96, −2.13], p = 0.0016). Oral prednisolone suppressed the IMQ-elevated total cell count (95% CI [−79.7%, −16.3%], p = 0.0165), NK and dendritic cells (95% CI [−68.7%, −5.2%], p = 0.0333, 95% CI [−76.9%, −13.9%], p = 0.0184), and classical monocytes (95% CI [−76.7%, −26.6%], p = 0.0043) in blister fluid. Notably, TNF, IL-6, IL-8, and Mx-A responses in blister exudate were also reduced by prednisolone compared to placebo. Oral prednisolone suppresses IMQ-induced skin inflammation, which underlines the value of this cutaneous challenge model in clinical pharmacology studies of novel anti-inflammatory compounds. In these studies, prednisolone can be used as a benchmark.</p
Platelets in Patients with Premature Coronary Artery Disease Exhibit Upregulation of miRNA340* and miRNA624*
Coronary artery disease (CAD) is the leading cause of human morbidity and mortality worldwide, underscoring the need to improve diagnostic strategies. Platelets play a major role, not only in the process of acute thrombosis during plaque rupture, but also in the formation of atherosclerosis itself. MicroRNAs are endogenous small non-coding RNAs that control gene expression and are expressed in a tissue and disease-specific manner. Therefore they have been proposed to be useful biomarkers. It remains unknown whether differences in miRNA expression levels in platelets can be found between patients with premature CAD and healthy controls. In this case-control study we measured relative expression levels of platelet miRNAs using microarrays from 12 patients with premature CAD and 12 age- and sex-matched healthy controls. Six platelet microRNAs were significantly upregulated (miR340*, miR451, miR454*, miR545:9.1. miR615-5p and miR624*) and one miRNA (miR1280) was significantly downregulated in patients with CAD as compared to healthy controls. To validate these results, we measured the expression levels of these candidate miRNAs by qRT-PCR in platelets of individuals from two independent cohorts; validation cohort I consisted of 40 patients with premature CAD and 40 healthy controls and validation cohort II consisted of 27 patients with artery disease and 40 healthy relatives. MiR340* and miR624* were confirmed to be upregulated in patients with CAD as compared to healthy controls in both validation cohorts. Two miRNAs in platelets are significantly upregulated in patients with CAD as compared to healthy controls. Whether the two identified miRNAs can be used as biomarkers and whether they are cause or consequence of the disease remains to be elucidated in a larger prospective stud
Oral prednisolone suppresses skin inflammation in a healthy volunteer imiquimod challenge model
Imiquimod (IMQ) is a topical agent that induces local inflammation via the Toll-like receptor 7 pathway. Recently, an IMQ-driven skin inflammation model was developed in healthy volunteers for proof-of-pharmacology trials. The aim of this study was to profile the cellular, biochemical, and clinical effects of the marketed anti-inflammatory compound prednisolone in an IMQ model. This randomized, double-blind, placebo-controlled study was conducted in 24 healthy volunteers. Oral prednisolone (0.25 mg/kg/dose) or placebo (1:1) was administered twice daily for 6 consecutive days. Two days after treatment initiation with prednisolone or placebo, 5 mg imiquimod (IMQ) once daily for two following days was applied under occlusion on the tape-stripped skin of the back for 48 h in healthy volunteers. Non-invasive (imaging and biophysical) and invasive (skin punch biopsies and blister induction) assessments were performed, as well as IMQ ex vivo stimulation of whole blood. Prednisolone reduced blood perfusion and skin erythema following 48 h of IMQ application (95% CI [−26.4%, −4.3%], p = 0.0111 and 95% CI [−7.96, −2.13], p = 0.0016). Oral prednisolone suppressed the IMQ-elevated total cell count (95% CI [−79.7%, −16.3%], p = 0.0165), NK and dendritic cells (95% CI [−68.7%, −5.2%], p = 0.0333, 95% CI [−76.9%, −13.9%], p = 0.0184), and classical monocytes (95% CI [−76.7%, −26.6%], p = 0.0043) in blister fluid. Notably, TNF, IL-6, IL-8, and Mx-A responses in blister exudate were also reduced by prednisolone compared to placebo. Oral prednisolone suppresses IMQ-induced skin inflammation, which underlines the value of this cutaneous challenge model in clinical pharmacology studies of novel anti-inflammatory compounds. In these studies, prednisolone can be used as a benchmark
Intradermal lipopolysaccharide challenge as an acute in vivo inflammatory model in healthy volunteers
Aims: Whereas intravenous administration of Toll-like receptor 4 ligand lipopolysaccharide (LPS) to human volunteers is frequently used in clinical pharmacology studies, systemic use of LPS has practical limitations. We aimed to characterize the intradermal LPS response in healthy volunteers, and as such qualify the method as local inflammation model for clinical pharmacology studies.  Methods: Eighteen healthy male volunteers received 2 or 4 intradermal 5 ng LPS injections and 1 saline injection on the forearms. The LPS response was evaluated by noninvasive (perfusion, skin temperature and erythema) and invasive assessments (cellular and cytokine responses) in skin biopsy and blister exudate.  Results: LPS elicited a visible response and returned to baseline at 48 hours. Erythema, perfusion and temperature were statistically significant (P <.0001) over a 24-hour time course compared to saline. The protein response was dominated by an acute interleukin (IL)-6, IL-8 and tumour necrosis factor response followed by IL-1β, IL-10 and interferon-γ. The cellular response consisted of an acute neutrophil influx followed by different monocyte subsets and dendritic cells.  Discussion: Intradermal LPS administration in humans causes an acute, localized and transient inflammatory reaction that is well-tolerated by healthy volunteers. This may be a valuable inflammation model for evaluating the pharmacological activity of anti-inflammatory investigational compounds in proof of pharmacology studies
Presentation_1_Oral prednisolone suppresses skin inflammation in a healthy volunteer imiquimod challenge model.pptx
Imiquimod (IMQ) is a topical agent that induces local inflammation via the Toll-like receptor 7 pathway. Recently, an IMQ-driven skin inflammation model was developed in healthy volunteers for proof-of-pharmacology trials. The aim of this study was to profile the cellular, biochemical, and clinical effects of the marketed anti-inflammatory compound prednisolone in an IMQ model. This randomized, double-blind, placebo-controlled study was conducted in 24 healthy volunteers. Oral prednisolone (0.25 mg/kg/dose) or placebo (1:1) was administered twice daily for 6 consecutive days. Two days after treatment initiation with prednisolone or placebo, 5 mg imiquimod (IMQ) once daily for two following days was applied under occlusion on the tape-stripped skin of the back for 48 h in healthy volunteers. Non-invasive (imaging and biophysical) and invasive (skin punch biopsies and blister induction) assessments were performed, as well as IMQ ex vivo stimulation of whole blood. Prednisolone reduced blood perfusion and skin erythema following 48 h of IMQ application (95% CI [−26.4%, −4.3%], p = 0.0111 and 95% CI [−7.96, −2.13], p = 0.0016). Oral prednisolone suppressed the IMQ-elevated total cell count (95% CI [−79.7%, −16.3%], p = 0.0165), NK and dendritic cells (95% CI [−68.7%, −5.2%], p = 0.0333, 95% CI [−76.9%, −13.9%], p = 0.0184), and classical monocytes (95% CI [−76.7%, −26.6%], p = 0.0043) in blister fluid. Notably, TNF, IL-6, IL-8, and Mx-A responses in blister exudate were also reduced by prednisolone compared to placebo. Oral prednisolone suppresses IMQ-induced skin inflammation, which underlines the value of this cutaneous challenge model in clinical pharmacology studies of novel anti-inflammatory compounds. In these studies, prednisolone can be used as a benchmark.</p