48 research outputs found

    Not wacky vs. definitely wacky: a study of scalar adverbs in pretrained language models

    Get PDF
    Vector-space models of word meaning all assume that words occurring in similar contexts have similar meanings. Words that are similar in their topical associations but differ in their logical force tend to emerge as semantically close – creating well-known challenges for NLP applications that involve logical reasoning. Pretrained language models such as BERT, RoBERTa, GPT-2, and GPT-3 hold the promise of performing better on logical tasks than classic static word embeddings. However, reports are mixed about their success. Here, we advance this discussion through a systematic study of scalar adverbs, an under-explored class of words with strong logical force. Using three different tasks involving both naturalistic social media data and constructed examples, we investigate the extent to which BERT, RoBERTa, GPT-2 and GPT-3 exhibit knowledge of these common words. We ask: 1) Do the models distinguish amongst the three semantic categories of MODALITY, FREQUENCY and DEGREE? 2) Do they have implicit representations of full scales from maximally negative to maximally positive? 3) How do word frequency and contextual factors impact model performance? We find that despite capturing some aspects of logical meaning, the models still have obvious shortfalls

    Temporal adaptation of BERT and performance on downstream document classification: insights from social media

    Get PDF
    Language use differs between domains and even within a domain, language use changes over time. For pre-trained language models like BERT, domain adaptation through continued pre-training has been shown to improve performance on in-domain downstream tasks. In this article, we investigate whether temporal adaptation can bring additional benefits. For this purpose, we introduce a corpus of social media comments sampled over three years. It contains unlabelled data for adaptation and evaluation on an upstream masked language modelling task as well as labelled data for fine-tuning and evaluation on a downstream document classification task. We find that temporality matters for both tasks: temporal adaptation improves upstream and temporal fine-tuning downstream task performance. Time-specific models generally perform better on past than on future test sets, which matches evidence on the bursty usage of topical words. However, adapting BERT to time and domain does not improve performance on the downstream task over only adapting to domain. Token-level analysis shows that temporal adaptation captures event-driven changes in language use in the downstream task, but not those changes that are actually relevant to task performance. Based on our findings, we discuss when temporal adaptation may be more effective

    Predicting COVID-19 cases using Reddit posts and other online resources

    Get PDF
    This paper evaluates the ability to predict COVID-19 caseloads in local areas using the text of geographically specific subreddits, in conjunction with other features. The problem is constructed as a binary classification task on whether the caseload change exceeds a threshold or not. We find that including Reddit features, alongside other informative resources, improves the models' performance in predicting COVID-19 cases. On top of this, we show that exclusive use of Reddit features can act as a strong alternative data source for predicting a short-term rise in caseload due to its strong performance and the fact that it is readily available and updates instantaneously

    Forecasting COVID-19 caseloads using unsupervised embedding clusters of social media posts

    Get PDF
    We present a novel approach incorporating transformer-based language models into infectious disease modelling. Text-derived features are quantified by tracking high-density clusters of sentence-level representations of Reddit posts within specific US states’ COVID-19 subreddits. We benchmark these clustered embedding features against features extracted from other high-quality datasets. In a threshold-classification task, we show that they outperform all other feature types at predicting upward trend signals, a significant result for infectious disease modelling in areas where epidemiological data is unreliable. Subsequently, in a time-series forecasting task, we fully utilise the predictive power of the caseload and compare the relative strengths of using different supplementary datasets as covariate feature sets in a transformer-based time-series model

    Two Contrasting Data Annotation Paradigms for Subjective NLP Tasks

    Get PDF
    Labelled data is the foundation of most natural language processing tasks. However, labelling data is difficult and there often are diverse valid beliefs about what the correct data labels should be. So far, dataset creators have acknowledged annotator subjectivity, but rarely actively managed it in the annotation process. This has led to partly-subjective datasets that fail to serve a clear downstream use. To address this issue, we propose two contrasting paradigms for data annotation. The descriptive paradigm encourages annotator subjectivity, whereas the prescriptive paradigm discourages it. Descriptive annotation allows for the surveying and modelling of different beliefs, whereas prescriptive annotation enables the training of models that consistently apply one belief. We discuss benefits and challenges in implementing both paradigms, and argue that dataset creators should explicitly aim for one or the other to facilitate the intended use of their dataset. Lastly, we conduct an annotation experiment using hate speech data that illustrates the contrast between the two paradigms.Comment: Accepted at NAACL 2022 (Main Conference

    Two contrasting data annotation paradigms for subjective NLP tasks

    Get PDF
    Labelled data is the foundation of most natural language processing tasks. However, labelling data is difficult and there often are diverse valid beliefs about what the correct data labels should be. So far, dataset creators have acknowledged annotator subjectivity, but rarely actively managed it in the annotation process. This has led to partly-subjective datasets that fail to serve a clear downstream use. To address this issue, we propose two contrasting paradigms for data annotation. The descriptive paradigm encourages annotator subjectivity, whereas the prescriptive paradigm discourages it. Descriptive annotation allows for the surveying and modelling of different beliefs, whereas prescriptive annotation enables the training of models that consistently apply one belief. We discuss benefits and challenges in implementing both paradigms, and argue that dataset creators should explicitly aim for one or the other to facilitate the intended use of their dataset. Lastly, we conduct an annotation experiment using hate speech data that illustrates the contrast between the two paradigms

    Time Machine GPT

    Get PDF
    Large language models (LLMs) are often trained on extensive, temporally indiscriminate text corpora, reflecting the lack of datasets with temporal metadata. This approach is not aligned with the evolving nature of language. Conventional methods for creating temporally adapted language models often depend on further pre-training static models on time-specific data. This paper presents a new approach: a series of point-in-time LLMs called Time Machine GPT (TiMaGPT), specifically designed to be nonprognosticative. This ensures they remain uninformed about future factual information and linguistic changes. This strategy is beneficial for understanding language evolution and is of critical importance when applying models in dynamic contexts, such as time-series forecasting, where foresight of future information can prove problematic. We provide access to both the models and training datasets
    corecore