117 research outputs found

    Diagnostic Value of FDG PET-CT Quantitative Parameters and Deauville-Like 5 Point-Scale in Predicting Malignancy of Focal Thyroid Incidentaloma

    Get PDF
    Objective: To evaluate the diagnostic value of FDG PET-CT metabolic parameters and Deauville-like 5 point-scale to predict malignancy in a population of patients presenting focal thyroid incidentaloma (fTI).Design: This retrospective study included 41 fTI, classified according to cytological and histological data as benign (BL) or malignant lesion (ML). FDG PET-CT semi-quantitative parameters (SUVmax, SUVmean, SUVpeak, MTV, TLG), tumor to liver SUVmean ratio (TLRmax and TLRmean), tumor to blood-pool SUVmean ratio (TBRmax and TBRmean) were calculated. Each fTI was also classified on a Deauville-like 5-point scale (DS) currently used in lymphoma. Comparison between BL and ML was performed for each parameter and a ROC analysis was conducted.Results: All quantitative PET metabolic parameters (SUV parameters, volume based parameters and SUV ratio) were higher in ML compared with BL, yet no significant difference was reported. fTI (uptake) malignancy rate according to DS grades 2, 3, 4, and 5 was, respectively, 25% (1 of 4), 28.6% (2 of 7), 8.3% (1 of 12), and 33.3% (6 of 18) with no significant difference between ML and BL groups. Results of ROC analysis showed that mean TBR had the highest AUC in our cohort (0.66 95%CI [0.41; 0.91]) with a cut-off value of 2.2. Specificity of MTV and TLG was 100% (cut-off values: MTV 9.6 ml, TLG 22.9 g) and their sensitivity was 30 and 40%, respectively.Conclusion: Our study did not highlight any FDG PET/CT parameter predictor of fTI malignancy

    Identification of CT radiomic features robust to acquisition and segmentation variations for improved prediction of radiotherapy-treated lung cancer patient recurrence.

    Full text link
    peer reviewedThe primary objective of the present study was to identify a subset of radiomic features extracted from primary tumor imaged by computed tomography of early-stage non-small cell lung cancer patients, which remain unaffected by variations in segmentation quality and in computed tomography image acquisition protocol. The robustness of these features to segmentation variations was assessed by analyzing the correlation of feature values extracted from lesion volumes delineated by two annotators. The robustness to variations in acquisition protocol was evaluated by examining the correlation of features extracted from high-dose and low-dose computed tomography scans, both of which were acquired for each patient as part of the stereotactic body radiotherapy planning process. Among 106 radiomic features considered, 21 were identified as robust. An analysis including univariate and multivariate assessments was subsequently conducted to estimate the predictive performance of these robust features on the outcome of early-stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. The univariate predictive analysis revealed that robust features demonstrated superior predictive potential compared to non-robust features. The multivariate analysis indicated that linear regression models built with robust features displayed greater generalization capabilities by outperforming other models in predicting the outcomes of an external validation dataset

    An atypical sarcoidosis involvement in FDG PET/CT

    No full text
    International audienc
    corecore