52 research outputs found

    Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications

    Get PDF
    Supercritical carbon dioxide processing of poly-l-lactide (PLLA)/hydroxyapatite (nHA) nanocomposites was investigated as a means to prepare foams suitable as scaffolds in bone tissue engineering applications. For given foaming parameters, addition of nHA to the PLLA gave reduced cell sizes and improved homogeneity in the size distribution, but did not significantly affect the degree of crystallinity, which remained of the order of 50wt% in all the foams. The compressive modulus and strength were primarily influenced by the porosity and there was no significant reinforcement of the matrix by the nHA. The mechanical properties of the foams were nevertheless comparable with those of trabecular bone, and by adjusting the saturation pressure and depressurization rate it was possible to generate porosities of about 85%, an interconnected morphology and cell diameters in the range 200-400ÎŒm from PLLA containing 4.17vol% nHA, satisfying established geometrical requirements for bone replacement scaffold

    Pre- and post-transition behavior of shear-thickening fluids in oscillating shear

    Get PDF
    The dynamic shear-thickening behavior of concentrated colloidal suspensions of fumed silica in polypropylene glycol has been investigated. Dynamic frequency sweeps showed that, for any given solids concentration, the complex viscosity at different imposed strain amplitudes followed a unique power-law-type behavior up to the onset of strain thickening. Moreover, similar behavior was also observed in the post-transition state, i.e., the viscosities again superimposed at frequencies beyond the transition frequency. In an attempt to develop a parametric description of this behavior, both the Delaware-Rutgers rule and the concept of a critical shear stress for the onset of shear thickening in steady-state experiments were considered. However, neither approach could account for the observed trends over the entire range of strains and frequency investigated. Plots of the critical shear strains for the onset and the end-point of the transition as a function of frequency were, therefore, used to describe the state of the suspensions for an arbitrary combination of strain and frequency. Finally, Fourier transform (FT) rheology was used to evaluate the extent of non-linearity in the response of the suspensions to dynamic shear, and it was shown that the observed behavior was not significantly influenced by wall slip at the tool-specimen interfac

    In vivo cyclic loading as a potent stimulatory signal for bone formation inside tissue engineering scaffolds

    Get PDF
    In clinical situations, bone defects are often located at load bearing sites. Tissue engineering scaffolds are future bone substitutes and hence they will be subjected to mechanical stimulation. The goal of this study was to test if cyclic loading can be used as stimulatory signal for bone formation in a bone scaffold. PLA/ 5% ÎČ-TCP scaffolds were implanted in both distal femoral epiphyses of eight rats. Right knees were stimulated (10N, 4Hz, 5min) five times, every two days, starting from the third day after surgery while left knees served as control. Finite element study of the in vivo model showed that the strain applied to the scaffold is similar to physiological strains. Using micro-CT, all knees were scanned five times after the surgery and the related bone parameters of the newly formed bone were quantified. Statistical modeling was used to estimate the evolution of these parameters as a function of time and loading. The results showed that mechanical stimulation had two effects on bone volume (BV): an initial decrease in BV at week 2, and a long-term increase in the rate of bone formation by 28%. At week 13, the BV was then significantly higher in the loaded scaffolds

    Pre-Heating of Thermoplastic Sandwich Materials for Rapid Thermoforming

    Get PDF
    The thermoforming of thermoplastic sandwich structures based on the same matrix polymer for the face sheets and the core requires precise temperature control both before and during forming. Two opposing requirements must be satisfied: the face sheets must be heated to above the glass transition temperature Tg of the polymer whereas the temperature of the core should not approach Tg in order to avoid the collapse of the foam cells. A numerical model was used to determine the optimal thermal parameters for thermoforming using an inverse method

    Morphological investigation of polylactide/microfibrillated cellulose composites

    Get PDF
    Optical microscopy and transmission electron microscopy have been used to investigate the morphology of polylactide (PLA)/microfibrillated cellulose (MFC) composites prepared by: compression molding of wet-comingled MFC and PLA latex or powder, twin-screw extrusion of the wet-comingled compounds, and solvent mixing of PLA with MFC or acetylated MFC. Compression molding of wet-comingled MFC and PLA latex or powder compounds resulted in a cellular MFC network, whereas solvent-cast films showed a more uniform dispersion of MFC fibers. Somewhat lower aggregate diameters observed in the acetylated MFC were assumed to be due to decreased MFC hydrophilicity and improved chemical affinity with the PLA matrix. The MFC networks in the commingled compounds were severely disrupted after twin-screw extrusion. This confirmed the limited deformability of the networks inferred from the extensive syneresis during the initial compression molding step, and accounted for substantial losses in stiffness reinforcement by the MFC after extrusio

    Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications

    Get PDF
    Supercritical carbon dioxide processing of poly--lactide (PLLA)/hydroxyapatite (nHA) nanocomposites was investigated as a means to prepare foams suitable as scaffolds in bone tissue engineering applications. For given foaming parameters, addition of nHA to the PLLA gave reduced cell sizes and improved homogeneity in the size distribution, but did not significantly affect the degree of crystallinity, which remained of the order of 50 wt% in all the foams. The compressive modulus and strength were primarily influenced by the porosity and there was no significant reinforcement of the matrix by the nHA. The mechanical properties of the foams were nevertheless comparable with those of trabecular bone, and by adjusting the saturation pressure and depressurization rate it was possible to generate porosities of about 85 %, an interconnected morphology and cell diameters in the range 200-400 mu m from PLLA containing 4.17 vol% nHA, satisfying established geometrical requirements for bone replacement scaffolds

    Miniature probe for the delivery and monitoring of a photopolymerizable material

    Get PDF
    Photopolymerization is a common method to cure materials initially in a liquid state, such as dental implants or bone or tissue fillers. Recent advances in the development of biocompatible gel- and cement-systems open up an avenue for in situ photopolymerization. For minimally invasive surgery, such procedures require miniaturized surgical endoscopic probes to activate and control photopolymerization in situ. We present a miniaturized light probe in which a photoactive material can be (1) mixed, pressurized, and injected, (2) photopolymerized/photoactivated, and (3) monitored during the chemical reaction. The device is used to implant and cure poly(ethylene glycol) dimethacrylate-hydrogel-precursor in situ with ultraviolet A (UVA) light (365 nm) while the polymerization reaction is monitored in real time by collecting the fluorescence and Raman signals generated by the 532 nm excitation light source. Hydrogels could be delivered, photopolymerized, and monitored by the probe up to a curing depth of 4 cm. The size of the photopolymerized samples could be correlated to the fluorescent signal collected by the probe, and the reproducibility of the procedure could be demonstrated. The position of the probe tip inside a bovine caudal intervertebral disc could be estimated in vitro based on the collected fluores- cence and Raman signal

    Synthesis and photopolymerization of Tween 20 Methacrylate/N-vinyl-2-Pyrrolidone blend

    Get PDF
    Poly(oxyethylene 20 sorbitan) monolaurate (TweenÂź 20) methacrylates were synthesized by coupling methacryloyl chloride (MeOCl) to Tween 20 in the presence of 4-(N,N-dimethylamino) pyridine, using THF as a solvent, in order to investigate their suitability as precursors for photopolymerizable hydrogels in tissue engi- neering applications. The degree of substitution could be controlled by adjusting the molar ratio of MeOCl and Tween 20, giving three different monomers: Tween 20 monomethacrylate, Tween 20 dimethacrylate and Tween 20 trimethacrylate. Combined 1 H NMR and MALDI-TOF MS confirmed these monomers to be of high purity and to have polydispersities less than 1.3. It was shown that aqueous solutions of the monomers were photoactive, all the methacrylate groups reacting within 30 minutes exposure to a UV light intensity of 145 mW/cm2. Aqueous Tween 20 trimethacrylate was then combined with N-vinyl-2-pyrrolidone (NVP), giving tough copolymer hydrogels on photopolymerization, whose swelling ratios and swelling rates could be tuned by varying the Tween 20 trimethacrylate content. The use of a flexible spacer with a multifunctional monomer gives a permanent three-dimensional network, whilst maintaining degrees of swelling of between 60 and 85%, with potential for a wide range of biological and non-biological applications

    Photo-polymerization, swelling and mechanical properties of cellulose fibre reinforced poly(ethylene glycol) hydrogels

    Get PDF
    The application of hydrogels as load-bearing biomedical components is often limited by their mechanical properties. Often an attempt to improve a hydrogel's stiffness is accompanied by a loss of toughness and swelling properties. In this work, we show that the addition of nanofibrillated cellulose (NFC) provides a mean to tailor both the swelling and the mechanical properties of the hydrogel. Various volume fractions of NFC were added to poly(ethylene glycol) dimethacrylate (PEGDM) precursors with two different molecular weights (6 and 20 kDa). The viscosity measurements of the precursor solutions indicated that the dispersed NFCs form a network-like structure in the hydrogel precursor. Such a structure, as observed in the photo-rheology experiments, serves as a light-scattering source when the solution is illuminated by UV light, which provides a uniform polymerization of the hydrogel in three-dimension and reduces the curing time. Mechanical properties of the neat and composite hydrogels were characterized using monotonic and cyclic compression tests. NFC reinforcement increases the hydrogel's stiffness by a factor 2 and 3.5 for the PEGDM matrixes with molecular weights of 6 and 20 kDa respectively without compromising their toughness. Moreover, the desired stiffness and swelling properties can be simultaneously achieved by adapting the reinforcement concentration and the hydrogel cross-link density. The obtained composite hydrogels offer enhanced and tuneable properties and are proposed for injectable and photo-curable load-bearing implants
    • 

    corecore