20 research outputs found

    On a bi-layer shallow-water problem

    Get PDF
    Abstract In this paper, we prove an existence and uniqueness result for a bi-layer shallow water model in depth-mean velocity formulation. Some smoothness results for the solution are also obtained. In a previous work we proved the same results for a one-layer problem. Now the di culty arises from the terms coupling the two layers. In order to obtain the energy estimate, we use a special basis which allows us to bound these terms.

    On the two-dimensional compressible isentropic Navier–Stokes equations

    Get PDF
    We analyze the compressible isentropic Navier–Stokes equations (Lions, 1998) in the two-dimensional case with γ=cp/cv=2\gamma= \displaystyle{{c_{p}}/{c_{v}}}=2. These equations also modelize the shallow water problem in height-flow rate formulation used to solve the flow in lakes and perfectly well-mixed sea. We establish a convergence result for the time-discretized problem when the momentum equation and the continuity equation are solved with the Galerkin method, without adding a penalization term in the continuity equation as it is made in Lions (1998). The second part is devoted to the numerical analysis and mainly deals with problems of geophysical fluids. We compare the simulations obtained with this compressible isentropic Navier–Stokes model and those obtained with a shallow water model (Di Martino et al., 1999). At first, the computations are executed on a simplified domain in order to validate the method by comparison with existing numerical results and then on a real domain: the dam of Calacuccia (France). At last, we numerically implement an analytical example presented by Weigant (1995) which shows that even if the data are rather smooth, we cannot have bounds on ρ in Lp for p large if γ<2\gamma<2 when N=2

    Etude d'un problème d'interaction fluide-structure (Application au flux artériel)

    No full text
    CORTE-BU (200962101) / SudocSudocFranceF
    corecore