215 research outputs found

    Development of stable reporter system cloning luxCDABE genes into chromosome of Salmonella enterica serotypes using Tn7 transposon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Salmonellosis may be a food safety problem when raw food products are mishandled and not fully cooked. In previous work, we developed bioluminescent <it>Salmonella enterica </it>serotypes using a plasmid-based reporting system that can be used for real-time monitoring of the pathogen's growth on food products in short term studies. In this study, we report the use of a Tn7-based transposon system for subcloning of <it>luxCDABE </it>genes into the chromosome of eleven <it>Salmonella enterica </it>serotypes isolated from the broiler production continuum.</p> <p>Results</p> <p>We found that the <it>lux </it>operon is constitutively expressed from the chromosome post-transposition and the <it>lux </it>cassette is stable without external pressure, i.e. antibiotic selection, for all <it>Salmonella enterica </it>serotypes used. Bioluminescence expression is based on an active electron transport chain and is directly related with metabolic activity. This relationship was quantified by measuring bioluminescence against a temperature gradient in aqueous solution using a luminometer. In addition, bioluminescent monitoring of two serotypes confirmed that our chicken skin model has the potential to be used to evaluate pathogen mitigation strategies.</p> <p>Conclusions</p> <p>This study demonstrated that our new stable reporting system eliminates bioluminescence variation due to plasmid instability and provides a reliable real-time experimental system to study application of preventive measures for <it>Salmonella </it>on food products in real-time for both short and long term studies.</p

    Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells

    Get PDF
    Escherichia coli is a frequent cause of clinical mastitis in dairy cows. It has been shown that a prompt response of the mammary gland after E. coli entry into the lumen of the gland is required to control the infection, which means that the early detection of bacteria is of prime importance. Yet, apart from lipopolysaccharide (LPS), little is known of the bacterial components which are detected by the mammary innate immune system. We investigated the repertoire of potential bacterial agonists sensed by the udder and bovine mammary epithelial cells (bMEC) during E. coli mastitis by using purified or synthetic molecular surrogates of bacterial agonists of identified pattern-recognition receptors (PRRs). The production of CXCL8 and the influx of leucocytes in milk were the readouts of reactivity of stimulated cultured bMEC and challenged udders, respectively. Quantitative PCR revealed that bMEC in culture expressed the nucleotide oligomerization domain receptors NOD1 and NOD2, along with the Toll-like receptors TLR1, TLR2, TLR4, and TLR6, but hardly TLR5. In line with expression data, bMEC proved to react to the cognate agonists C12-iE-DAP (NOD1), Pam3CSK4 (TLR1/2), Pam2CSK4 (TLR2/6), pure LPS (TLR4), but not to flagellin (TLR5). As the udder reactivity to NOD1 and TLR5 agonists has never been reported, we tested whether the mammary gland reacted to intramammary infusion of C12-iE-DAP or flagellin. The udder reacted to C12-iE-DAP, but not to flagellin, in line with the reactivity of bMEC. These results extend our knowledge of the reactivity of the bovine mammary gland to bacterial agonists of the innate immune system, and suggest that E. coli can be recognized by several PRRs including NOD1, but unexpectedly not by TLR5. The way the mammary gland senses E. coli is likely to shape the innate immune response and finally the outcome of E. coli mastitis

    Investigating the contribution of IL-17A and IL-17F to the host response during Escherichia coli mastitis

    Get PDF
    Mastitis remains a major disease of cattle with a strong impact on the dairy industry. There is a growing interest in understanding how cell mediated immunity contributes to the defence of the mammary gland against invading mastitis causing bacteria. Cytokines belonging to the IL-17 family, and the cells that produce them, have been described as important modulators of the innate immunity, in particular that of epithelial cells. We report here that expression of IL-17A and IL-17F genes, encoding two members of the IL-17 family, are induced in udder tissues of cows experimentally infected with Escherichia coli. The impact of IL-17A on the innate response of bovine mammary epithelial cells was investigated using a newly isolated cell line, the PS cell line. We first showed that PS cells, similar to primary bovine mammary epithelial cells, were able to respond to agonists of TLR2 and to LPS, provided CD14 was added to the culture medium. We then showed that secretion of CXCL8 and transcription of innate immunity related-genes by PS cells were increased by IL-17A, in particular when these cells were stimulated with live E. coli bacteria. Together with data from the literature, these results support the hypothesis that IL-17A and IL-17 F could play an important role in mediating of host-pathogen interactions during mastitis

    Enterobactin Deficiency in a Coliform Mastitis Isolate Decreases Its Fitness in a Murine Model:A Preliminary Host–Pathogen Interaction Study

    Get PDF
    Iron is an essential nutrient for bacterial growth. Therefore, bacteria have evolved chelation mechanisms to acquire iron for their survival. Enterobactin, a chelator with high affinity for ferric iron, is secreted by Escherichia coli and contributes to its improved bacterial fitness. In this preliminary study, we evaluated enterobactin deficiency both in vitro and in vivo in the context of E. coli mastitis. Firstly, we showed that expression of lipocalin 2, a protein produced by the host that is able to both bind and deplete enterobactin, is increased upon E. coli infection in the cow’s mastitic mammary gland. Secondly, we demonstrated in vitro that enterobactin deficiency does not alter interleukin (IL)-8 expression in bovine mammary epithelial cells and its associated neutrophil recruitment. However, a significantly increased reactive oxygen species production of these neutrophils was observed. Thirdly, we showed there was no significant difference in bacterial in vitro growth between the enterobactin-deficient mutant and its wild-type counterpart. However, when further explored in a murine model for bovine mastitis, the enterobactin-deficient mutant vs. the wild-type strain revealed a significant reduction of the bacterial load and, consequently, a decrease in pro-inflammatory cytokines (IL-1a,−1b,−4,−6, and−8). A reduced neutrophilic influx was also observed immunohistochemically. These findings therefore identify interference of the enterobactin iron-scavenging mechanism as a potential measure to decrease the fitness of E. coli in the mastitic mammary gland
    corecore