29 research outputs found

    Mécanismes et fonctionnalités de l’agrégation chez les isopodes terrestres

    No full text
    Les regroupements d'’animaux forment sans doute l’'un des plus fréquents comportements collectifs et peuvent considérablement varier en taille, en forme et en stabilité. Ces structures émergent souvent de processus simples d’'interattraction, basés sur l’'amplification d'’un signal d'’agrégation.Pour autant, la compréhension de la modulation des décisions collectives selon le contexte social et environnemental nécessite une approche globale et multifactorielle. En outre, la complexité du tissu liant les interactions individuelles, l’'environnement et les structures collectives en résultant reste encore mal connue.Les isopodes terrestres forment un groupe remarquable de crustacés terrestres particulièrement grégaires. Dans un premier volet de ce document, nous nous intéressons à la sensibilité de leur comportement d’'agrégation aux facteurs biotiques (densité de congénères, présence de différentes espèces) et abiotiques (luminosité, présence d’hétérogénéités environnementales). Dans un second volet, nous nous intéresserons aux valeurs adaptatives de leur comportement d’'agrégation, c'’est-à-dire aux bénéfices individuels tirés du groupe, notamment au regard de la dessiccation corporelle.Nos résultats montrent principalement que (1) l’'agrégation chez les isopodes terrestres est le fruit d'’un équilibre entre des préférences individuelles pour les hétérogénéités de l’'environnement et d’'une interattraction sociale. Particulièrement, (2) cette composante sociale se caractérise par une modulation des comportements individuels selon la taille du groupe :le temps passé dans l'’agrégat par chaque individu augmente avec le nombre de congénères suite à un effet synergique d’'attraction et de rétention des congénères. Cet effet est à la base des processus d'’amplification nécessaire à l’'émergence d'’un agrégat (3). Par ailleurs, (4) la forme sigmoïdale des fonctions mathématiques sous-jacentes conduisent à effet de seuil densité-dépendant, impliquant un nombre minimum d’'individu pour qu'’un agrégat puisse émerger. Ces règles élémentaires conduisent à une régulation importante de la taille des groupes et de leur distribution spatio-temporelle dans l’'environnement (5). Elles sont également à l’œ'oeuvre dans l’'établissement de groupes mixtes (i.e. composés de plusieurs espèces)dans lesquels nous montrons des processus d'’amplification fortement partagés entre les espèces mais pour lesquels le poids accordé aux informations hétérospécifiques est plus faible (6). Nous discutons de la nature des interactions possiblement impliqués dans l’'émergence des groupes,notamment à travers des modèles de contagion sociale impliquant une mise en repos collective (7). Enfin, (8) nous montrons une relation entre la conformation spatiale des individus agrégés, la taille des groupes et les bénéfices individuels non-linéaires tirés du groupe. L'’ensemble de ces résultats est discuté dans le contexte générique des phénomènes auto-organisés observés chez de nombreux vertébrés et invertébrés grégaires. Nous discutons pour finir de l'’intérêt des isopodes terrestres dans la compréhension du rôle des groupements collectifs dans les transitions écologiques majeures.Doctorat en Sciencesinfo:eu-repo/semantics/nonPublishe

    Behavioural Contagion Explains Group Cohesion in a Social Crustacean.

    No full text
    In gregarious species, social interactions maintain group cohesion and the associated adaptive values of group living. The understanding of mechanisms leading to group cohesion is essential for understanding the collective dynamics of groups and the spatio-temporal distribution of organisms in environment. In this view, social aggregation in terrestrial isopods represents an interesting model due to its recurrence both in the field and in the laboratory. In this study, and under a perturbation context, we experimentally tested the stability of groups of woodlice according to group size and time spent in group. Our results indicate that the response to the disturbance of groups decreases with increases in these two variables. Models neglecting social effects cannot reproduce experimental data, attesting that cohesion of aggregation in terrestrial isopods is partly governed by a social effect. In particular, models involving calmed and excited individuals and a social transition between these two behavioural states more accurately reproduced our experimental data. Therefore, we concluded that group cohesion (and collective response to stimulus) in terrestrial isopods is governed by a transitory resting state under the influence of density of conspecifics and time spent in group. Lastly, we discuss the nature of direct or indirect interactions possibly implicated.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Body shape in terrestrial isopods: A morphological mechanism to resist desiccation?

    No full text
    Woodlice are fully terrestrial crustaceans and are known to be sensitive to water loss. Their half-ellipsoidal shapes represent simple models in which to investigate theoretical assumptions about organism morphology and rates of exchange with the environment. We examine the influence of surface area and mass on the desiccation rates in three eco-morphologically different species of woodlice: Oniscus asellus, Porcellio scaber, and Armadillidium vulgare. Our analysis indicates that the rate of water loss of an individual depends on both the initial weight and the body surface area. Interspecific and intraspecific analyses show that the mass-specific water loss rate of a species decreases along with the ratio of surface area to volume. In particular, we show that body shape explains the difference in mass-specific water loss rates between A. vulgare and P. scaber. This observation also explains several known ecological patterns, for example, the distribution and survivorship of individuals. However, in addition to body size and shape, water loss in terrestrial isopods depends also on the coefficient of permeability (i.e. a measure of water loss rate per surface unit), which is high in O. asellus and lower (and at similar levels) in P. scaber and A. vulgare. We discuss morphological, physiological, and behavioral aspects of water loss avoidance in terrestrial isopods.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea)

    No full text
    Living isopods of the suborder Oniscidea (commonly called woodlice) are the only group of Crustacea almost entirely composed of terrestrial forms. Furthermore, woodlice are completely independent from the aquatic environment from which they originally arose. From marine ancestors, woodlice are a key taxon to study the conquest of the land among arthropods because of their interesting gradation of morphological, physiological and behavioral adaptations for terrestriality. However, the origin and evolution of this model group are still poorly known. Herein, we provide a synthesis of the oniscidean fossil record to replace this group in a deep-time context. Because members of the Oniscidea are difficult to fossilize, their fossil record alone is undoubtedly fragmentary and not representative of their complete evolutionary history, but it maintains an important relevance by providing reference points. To date, the first attested occurrences of Oniscidea are recorded from the Early Cretaceous. At this time, woodlice were already widely distributed (from Western Europe to Eastern Asia) with several species. By evaluating phylogenetic studies, palaeobiogeographic context of fossil specimens and current biological considerations, we discuss and support a pre-Pangaean origin of the Oniscidea, in the Late Paleozoic-most likely during the Carboniferous. © 2012 Springer Science+Business Media Dordrecht.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Calculated experimental and theoretical fraction of slow individuals <i>F</i><sub><i>s</i></sub> according to number of initially introduced individuals (a) and the retention time of groups (b).

    No full text
    <p>Calculated experimental and theoretical fraction of slow individuals <i>F</i><sub><i>s</i></sub> according to number of initially introduced individuals (a) and the retention time of groups (b).</p

    Benefits of aggregation in woodlice: A factor in the terrestrialization process?

    No full text
    In the animal kingdom, living in group is driven by a tradeoff between the costs and the benefits of this way of life. This review focuses especially on the benefits of aggregation and crowding in woodlice (Crustacea: Isopoda: Oniscidea). Indeed, woodlice are well known to live in groups. Their aggregation behavior, as described in the early works of Allee, is regarded as a mechanism to prevent desiccation to which woodlice are extremely sensitive. However, it is now clear that there are additional benefits to aggregation in woodlice. Hence, this review addresses not only the limitation of water loss as the main factor explaining aggregation patterns, but also alternative explanations as reduction of oxygen consumption, increase in body growth, biotic stimuli for reproduction, better access to mates, possible shared defenses against predators, promotion of coprophagy as a secondary food source, sheltering behavior and the acquisition of internal symbionts. In addition, we place woodlice in the context of a terrestrialization process and propose that woodlice-the only suborder of Crustacea almost entirely composed of strictly terrestrial species-are a model taxon for studying the evolution of sociality through the transition from water to land. Further, we discuss other ultimate causes of aggregation preserved in terrestrial isopods in light of those explained in aquatic isopods and under the concept of exaptation. This knowledge could help understand, in this and other taxa, how the spatial closeness between conspecifics may promote the colonization of new environments and nonphysiological responses to climatic constraints. © 2013 International Union for the Study of Social Insects (IUSSI).SCOPUS: re.jinfo:eu-repo/semantics/publishe

    The monotonicity formula in geometric measure theory, and an application to a partially free boundary problem

    No full text
    To appear in: Springer Lecture Notes in MathematicsSIGLETIB Hannover: RO 5389(35) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    According to the initial retention time of individuals, the dynamics of dispersion of groups of 40 woodlice (a) and the time necessary to disperse 50% of the population introduced (half-life time) (b).

    No full text
    <p>According to the initial retention time of individuals, the dynamics of dispersion of groups of 40 woodlice (a) and the time necessary to disperse 50% of the population introduced (half-life time) (b).</p

    According to number of woodlice initially introduced, the dynamics of the dispersion of groups held for 300 s (a) and the time necessary to disperse 50% of the population introduced (half-life time) (b).

    No full text
    <p>For the experiment with 120 woodlice, only the first 1500 s were represented in Fig 1a for better visibility, but some aggregates persisted for more than 4300 s with 120 individuals.</p
    corecore