5,342 research outputs found

    Bridging the Gap Between Ox and Gauss using OxGauss

    Get PDF
    The purpose of this paper is to review and discuss the key improvements brought to OxGauss. Without having to install Gauss on his or her machine, the OxGauss user can run under Ox a wide range of Gauss programs and codes. Even with the console Ox version (free for academics), Gauss codes can either be called from Ox programs or run and executed on their own. While the new OxGauss version is very powerful in most circumstances, it is of little use once the purpose is to execute programs that attempt to solve optimization problems using Cml, Maxlik or Optmum. In this paper we propose a set of additional procedures that contribute to bridge the gap between Ox and three well-known Gauss application modules: Cml, Maxlik or Optmum.The effectiveness of our procedures is illustrated by revisiting a large number of freely available Gauss codes in which numerical optimization relies on the above Gauss application modules. The Gauss codes include many programs dealing with non-linear models such as the Markov regime-switching models STAR models and various GARCH-type models. These illustrations highlight a further potentially interesting implication of OxGauss: it enables non-Gauss users to replicate existing empirical results using freely available Gauss codes.econometrics;

    Radiation effects on CMOS image sensors with sub-2µm pinned photodiodes

    Get PDF
    A group of four commercial sensors with pixel pitches below 2μm has been irradiated with 60Co source at several total ionizing dose levels related to space applications. A phenomenological approach is proposed through behavior analysis of multiple sensors embedding different technological choices (pitch, isolation or buried oxide). A complete characterization including dark current, activation energy and temporal noise analysis allows to discuss about a degradation scheme

    A novel experimental method for the measurement of the caloric curves of clusters

    Full text link
    A novel experimental scheme has been developed in order to measure the heat capacity of mass selected clusters. It is based on controlled sticking of atoms on clusters. This allows one to construct the caloric curve, thus determining the melting temperature and the latent heat of fusion in the case of first-order phase transitions. This method is model-free. It is transferable to many systems since the energy is brought to clusters through sticking collisions. As an example, it has been applied to Na\_90\^+ and Na\_140\^+. Our results are in good agreement with previous measurements

    A tight bound on the throughput of queueing networks with blocking

    Get PDF
    In this paper, we present a bounding methodology that allows to compute a tight lower bound on the cycle time of fork--join queueing networks with blocking and with general service time distributions. The methodology relies on two ideas. First, probability masses fitting (PMF) discretizes the service time distributions so that the evolution of the modified network can be modelled by a Markov chain. The PMF discretization is simple: the probability masses on regular intervals are computed and aggregated on a single value in the orresponding interval. Second, we take advantage of the concept of critical path, i.e. the sequence of jobs that covers a sample run. We show that the critical path can be computed with the discretized distributions and that the same sequence of jobs offers a lower bound on the original cycle time. The tightness of the bound is shown on computational experiments. Finally, we discuss the extension to split--and--merge networks and approximate estimations of the cycle time.queueing networks, blocking, throughput, bound, probability masses fitting, critical path.

    Probability masses fitting in the analysis of manufacturing flow lines

    Get PDF
    A new alternative in the analysis of manufacturing systems with finite buffers is presented. We propose and study a new approach in order to build tractable phase-type distributions, which are required by state-of-the-art analytical models. Called "probability masses fitting" (PMF), the approach is quite simple: the probability masses on regular intervals are computed and aggregated on a single value in the corresponding interval, leading to a discrete distribution. PMF shows some interesting properties: it is bounding, monotonic and it conserves the shape of the distribution. After PMF, from the discrete phase-type distributions, state-of-the-art analytical models can be applied. Here, we choose the exactly model the evolution of the system by a Markov chain, and we focus on flow lines. The properties of the global modelling method can be discovered by extending the PMF properties, mainly leading to bounds on the throughput. Finally, the method is shown, by numerical experiments, to compute accurate estimations of the throughput and of various performance measures, reaching accuracy levels of a few tenths of percent.stochastic modelling, flow lines, probability masses fitting, discretization, bounds, performance measures, distributions.

    Mass transfer in a membrane aerated biofilm

    Get PDF
    We present experimental results of mass transfer of a non reactive tracer gas (neon)measured in aerobic heterotrophic biofilm developed from activated sludge. Biofilms are grown in various hydrodynamic conditions and the effective diffusivity is used to quantify the mass transfer through the biofilm. Beyond some cross-flow conditions, the effective diffusivity through the biofilm seems larger than in the bulk. This can be explained by a dispersion generated by convection inside the biofilm, as supported by an analytical flow model and in accordance to the numerical simulation proposed by Aspa et al. (2011)

    Nonparametric frontier estimation from noisy data

    Get PDF
    A new nonparametric estimator of production frontiers is defined and studied when the data set of production units is contaminated by measurement error. The measurement error is assumed to be an additive normal random variable on the input variable, but its variance is unknown. The estimator is a modification of the m-frontier, which necessitates the computation of a consistent estimator of the conditional survival function of the input variable given the output variable. In this paper, the identification and the consistency of a new estimator of the survival function is proved in the presence of additive noise with unknown variance. The performance of the estimator is also studied through simulated data.production frontier, deconvolution, measurement error, efficiency analysis

    Nonparametric Frontier Estimation from Noisy Data

    Get PDF
    A new nonparametric estimator of production a frontier is defined and studied when the data set of production units is contaminated by measurement error. The measurement error is assumed to be an additive normal random variable on the input variable, but its variance is unknown. The estimator is a modification of the m-frontier, which necessitates the computation of a consistent estimator of the conditional survival function of the input variable given the output variable. In this paper, the identification and the consistency of a new estimator of the survival function is proved in the presence of additive noise with unknown variance. The performance of the estimator is also studied through simulated data.
    corecore