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Abstract 
A new alternative in the analysis of manufacturing systems with finite buffers is presented. We propose and 
study a new approach in order to build tractable phase-type distributions, which are required by state-of-
the-art analytical models. Called "probability masses fitting" (PMF), the approach is quite simple: the 
probability masses on regular intervals are computed and aggregated on a single value in the corresponding 
interval, leading to a discrete distribution. PMF shows some interesting properties: it is bounding, 
monotonic and it conserves the shape of the distribution. After PMF, from the discrete phase-type 
distributions, state-of-the-art analytical models can be applied. Here, we choose the exactly model the 
evolution of the system by a Markov chain, and we focus on flow lines. The properties of the global 
modelling method can be discovered by extending the PMF properties, mainly leading to bounds on the 
throughput. Finally, the method is shown, by numerical experiments, to compute accurate estimations of the 
throughput and of various performance measures, reaching accuracy levels of a few tenths of percent. 
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1 Introduction

In the present economic situation, companies are submitted to an ever more
competitive environment. Investments have to bring ever higher profit mar-
gin. In view of this, inventory has become a crucial question in production,
due to the investment it requires and ties up. It is essential for companies to
get high productivity, while limiting the investments used by stocks. In this
context, the analysis of manufacturing systems with finite storage capacity
is of practical interest. Models of such systems needs to be realistic, accu-
rate and complete in order to allow to design and manage them efficiently,
and, in particular, to find the best balance between productivity benefits
and inventory costs.

In the last decades, various analytical models for manufacturing systems
with finite buffers have thus been proposed. The only exact models of prac-
tical interest are called state models. They build a continuous (rarely dis-
crete) Markov chain that models the evolution of the system and from which
the performance measures can be inferred (see [11] for example). However,
these models’ applicability is limited to small instances as the state space
size of the Markov chain increases quickly with the system size. As a result,
approximate models have been proposed, based on the idea of decompos-
ing the system. First, the decomposition method breaks the system into
smaller subsystems, analyze them in isolation and then adds back the inter-
dependencies between the subsystems iteratively (see [6] for a good review).
Second, the generalized expansion method also decomposes the system, but
it adds the concept of an artificial node which registers the blocked jobs (see
[12]). For further details, several comprehensive reviews of analytical models
for manufacturing systems are available, such as [5, 9, 14, 1, 7, 13, 10].

An important assumption of these analytical models (exact and approxi-
mate) is that they suppose phase–type distributed processing times, so that
the theory of Markov processes can be applied. No analytical model is di-
rectly available for generally distributed processing times. Consequently, in
practice, in order to analyze real systems with general distributions, one has
to build tractable phase–type distributions previously to the application of
the analytical models. This preliminary step is part of the modelling pro-
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cess, which should be seen as a whole. The most classical method to build
tractable distributions is moments fitting: the two (or three) first moments
are computed from the original distributions and the phase–type distribu-
tions are then built in order to get the same first moments (see [17] for
example). Other statistical techniques can be used, based on the maximum
likelihood principle for example (see [4]).

Our originality lies in this step of the modelling process. In this pa-
per, we present a new alternative to build tractable distributions, called
“probability masses fitting” (PMF). PMF is quite intuitive: the probability
masses on regular intervals are computed and aggregated on a single value
in the corresponding interval, leading to a discrete (phase–type) distribu-
tion. PMF is particularly natural when the data about the processing time
distributions is collected in the form of histograms, the most common form
in practice. Note that the method is essentially designed with continuous
original distributions in mind (even if discrete original distributions could
be considered). After PMF, from the discrete distributions, a state model
is applied, modelling the evolution of the system by a Markov chain, from
which the performance measures can be computed. The goal of this paper
is to present probability masses fitting and to study its effects on the global
modelling process and on its results. PMF is presented in a general fashion:
the particular value in the interval where the probability mass is aggregated
is a parameter. In a previous communication [16], we introduced a particular
PMF, called “grouping at the end”, which aggregates the probability masses
at the end of the intervals, and studied its effect on the productivity esti-
mation. The present paper introduces the general PMF and its properties,
and presents the estimation of various performance measures.

The rest of the paper is organized as follows. Probability masses fitting
is presented in details in section 2. We show various properties of PMF,
such as bounding and monotonicity properties. We present two slightly
different alternatives (generating instant jobs or not) and discuss PMF’s
characteristics. In section 3, the global modelling method (PMF followed
by a state model) is presented for manufacturing flow lines. Then, our
first point is to translate the PMF properties to the productivity of the
modeled system. This is done in section 4. In section 5, we show, by
computational results, how our methods behaves. We show that our method
leads to accurate estimations of the performance measures and we study
how the results change when the system configuration changes. Finally, we
conclude in section 6.
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Figure 1: Discretization by probability masses fitting, with a = 3.

2 Probability Masses Fitting

In this section, we present the proposed method to build tractable discrete
phase–type distributions, called “probability masses fitting”, and denoted
PMF. A general definition is first given, followed by some interesting prop-
erties. Then, an alternative PMF is presented. Finally, we discuss the
advantages and weaknesses of PMF.

2.1 Definition

Let us suppose we have a positive finite processing time distribution and
want to transform it into a discrete phase–type distribution by probability
masses fitting. To begin, we choose the number of non–zero discrete values,
denoted a. Moreover, as we want to infer a discrete Markov chain from
the obtained distribution, the size of the interval between two consecutive
discrete values, denoted τ , has to be constant. Knowing this, the idea behind
probability masses fitting is quite simple: the probability of each discrete
value equals the original probability mass around this discrete value. The
original distribution is transformed into a discrete one by aggregating the
original probability mass distributed in an interval around each discrete
value. In order to fix the shift of the intervals, we introduce the parameter
α, with 0 ≤ α ≤ τ , which gives the size of the part of the interval located
after the discrete value. In summary, PMF transforms a given distribution
into a discrete one by aggregating the probability mass distributed in the
interval ((j − 1)τ + α, jτ + α] on the point jτ , for each j = 1, 2, . . . , a, and
the mass in [0, α] on 0. PMF is illustrated on figure 1. Note that τ gives
the interval between two discrete values as well as the interval on which the
probability mass is computed.

In practice, the parameters a, i.e. the number of non–zero discrete values,
and the factor α/τ , i.e. the proportion of the interval which is located
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after the discrete value, are first chosen. The space τ between two discrete
values, or, equivalently, the probability mass interval size, is then deduced
from these parameters so that the finite width of the original distribution
is covered. In other words, we want the maximum original time max to be
equal to aτ + α, so that τ is chosen as follows:

τ =
max − α

a
. (1)

Before showing some properties of PMF, let us introduce some nota-
tions. The random variable representing the processing time of wi,k, the
job k on station i, is denoted l(wi,k). The realization of l(wi,k) in a sample
production run rP (producing P units), i.e. the time the job wi,k takes in
this particular run, is denoted lr(wi,k). After PMF with parameter α, we
get the corresponding discrete processing times lα(wi,k) and the realizations
lrα(wi,k). Note that, with these notations, the PMF discretization can be
formulated as follows:

lrα(wi,k)
∆
=

⌈

lr(wi,k) − α

τ

⌉

τ, ∀ rP , i, k.

2.2 Properties

One of the main advantages of probability masses fitting lies in the strong
control it offers on the transformation of the individual processing times.
The transformation of each original processing time to a discrete processing
time is exactly known. Notably, we know that, when discretized, a process-
ing time will not be shifted by more than α to the left neither by more than
τ − α to the right (see figure 1). It leads to the following bounds on the
processing time.

Proposition 1. The original processing time of a job, lr(wi,k), can be
bounded using its discretized value, lrα(wi,k).

lrα(wi,k) − (τ − α) ≤ lr(wi,k) ≤ lrα(wi,k) + α, ∀ rP , i, k. (2)

Proof. There are two limit cases. The lower bound corresponds to a processing time of
length 0 which is increased to τ , with j = 1, . . . , a. The upper bound corresponds to a
processing time of length jτ + α which is decreased to jτ , with j = 0, . . . , a.

The main interest of these bounds on processing times comes from their
extension to bounds on the productivity, which will be shown in section 4.1.
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The non–conservation of the distribution expectation, in general, is an-
other characteristic of probability masses fitting. The error made on the
expectation is a function of the characteristics of the original distribution
and of the parameter α, i.e. the shift of the interval on which the probability
mass is computed. Consequently, it is quite interesting to study the evolu-
tion of the discretized processing time according to the parameter α. It can
be checked that this evolution is a monotonic, more precisely decreasing,
function. Moreover we show that a particular α can always be found so that
the expectation of the discrete distribution equals the expectation of the
original distribution, if the latter is continuous. In other words, the conser-
vation of the expectation can be obtained by choosing the right parameter
α.

Proposition 2. When discretizing by PMF with two parameters α such that
α1 ≤ α2, and a constant, the first discretized processing time will always be
larger than the second one.

lrα1
(wi,k) ≥ lrα2

(wi,k), ∀ rP , i, k.

The expectation of a distribution discretized by probability masses fitting is
thus decreasing when α is increasing. Moreover, if the original cumulative
distribution function F (t) is continuous, the evolution in α of the expectation
of the discretized distribution is also continuous. Consequently, a parameter
α can always be computed so that the expectation is conserved, i.e. so that
the expectation of the discretized distribution is the same as the original one.

Proof. To begin, note that jτ1 + α1 ≤ jτ2 + α2, ∀ j, as, by equation (1), jτ + α =
j((max−α)/a) + α = (j max+ α(a− j))/a, and as j ≤ a. In order to prove the first part
of the proposition, two cases have thus to be considered. In the first case, the original
processing time lies between (j − 1)τ2 + α2 and jτ1 + α1. We thus get lrα2

(wi,k) = jτ2

and lrα1
(wi,k) = jτ1 and, as τ1 ≥ τ2 (τ = (max − α)/a), the proposition inequality is

valid in this case. In the second case, the original processing time lies between jτ1 + α1

and jτ2 + α2. We thus get lrα2
(wi,k) = jτ2 and lrα1

(wi,k) = (j + 1)τ1 and the proposition
inequality is also valid in this second case.

To prove the continuity in α of E[tα], the expectation of a discretized distribution,
we can simply formulate E[tα] as a sum of continuous functions. If f(t) and F (t) are
the probability density function and the cumulative distribution function of the original

5



distribution, E[tα] can be written as follows:

E[tα] =
a

∑

j=0

jτ

∫ jτ+α

(j−1)τ+α

f(t) dt =
a

∑

j=1

jτ
(

F (jτ + α) − F ((j − 1)τ + α)
)

= τ
(

F (τ + α) − F (α)
)

+ 2τ
(

F (2τ + α) − F (τ + α)
)

+ . . .

. . . + aτ
(

F (aτ + α) − F ((a − 1)τ + α)
)

= −τF (α)− τF (τ + α) − . . . − τF ((a− 1)τ + α) + aτF (max)

= aτ − τ

a−1
∑

j=0

F (jτ + α).

This proves the second statement of the proposition. Finally, in order to prove that
an α leading to expectation conservation can be found, we just have to show that this
expectation is larger than the expectation of the original distribution when α equals zero
and smaller when α equals τ . As it is continuous, the expectation of the discretized
distribution will thus equal the expectation of the original distribution for a given α.
From equation (2), it can be seen that, when α equals zero, lr(wi,k) ≤ lr0(wi,k), in other
words every processing time is lengthened by the discretization. The expectation of the
discretized distribution is thus larger than the original one. Similarly, from (2), when α
equals τ , lrτ (wi,k) ≤ lr(wi,k), and the expectation of the discretized distribution is thus
smaller than the original one. This ends the proof.

Note that the distribution function F (t) is indeed continuous if the pro-
cessing times distributions are given in the form of histograms.

2.3 Probability Masses Fitting Without Instant Job

In the previous section, we introduced the basic probability masses fitting.
This discretization potentially generates discrete processing times of length
zero with non–zero probability of occurrence (see figure 1). In discretized
time, jobs with length zero can thus occur. We call them “instant jobs”.
It is not difficult to guess that instant jobs complicate the modelling of the
system (see section 3). It leads us to propose an alternative to the basic
PMF, an alternative which does not generate jobs with length zero. We
call it “probability masses fitting without instant job”, denoted PMF/nIJ.
Moreover, in order to avoid confusion, we will, from now on, call the basic
PMF presented previously “probability masses fitting with instant job”,
and note it PMF/IJ. PMF will be used for the general concept, without
differentiation between both alternatives.

In this section, we briefly present PMF/nIJ and its properties. Prob-
ability masses fitting without instant job is very similar to its sister with
instant jobs. It is just modified in order to remove the possibility of instant
jobs. The small difference thus only concerns the first interval (from 0 to
α). The original probability mass on this interval [0, α] is aggregated on τ
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Figure 2: Discretization by probability masses fitting without instant job,
with a = 3.

instead of 0. In summary, PMF/nIJ transforms a given distribution into a
discrete one by aggregating the probability mass distributed in the interval
((j − 1)τ + α, jτ + α] on the point jτ , for j = 1, 2, . . . , a, and the mass
in [0, α] on τ . PMF/nIJ is illustrated on figure 2. Compared to figure 1,
the differences lie in the width of the interval on which the first probability
mass is computed and in the absence of probability in zero. Using PMF/IJ
or PMF/nIJ, the discretized distributions will have the same values for all
but the first interval. Note that PMF/IJ and PMF/nIJ are equivalent when
α = 0.

The parameters a, α and τ are defined exactly the same way as for
PMF/IJ. The space τ between two discrete values is deduced from a and
α/τ using (1). The processing times discretized by PMF/nIJ are denoted
lα′(wi,k) and the realizations lrα′(wi,k). With these notations, PMF/nIJ can
be formulated as follows:

lrα′(wi,k)
∆
= τ, if lr(wi,k) ≤ τ + α, ∀ rP , i, k,
∆
=

⌈

lr(wi,k)−α

τ

⌉

τ, if lr(wi,k) > τ + α, ∀ rP , i, k.

The properties of probability masses fitting without instant job are sim-
ilar to the properties of PMF with instant jobs (see section 2.2). We give
them shortly. As the first interval is larger using PMF/nIJ (see figure 2),
the bounding property is less good than the one of PMF/IJ. The lower
bound is less tight.

Proposition 3. The original processing time of a job, lr(wi,k), can be
bounded using its PMF/nIJ discretized value, lrα′(wi,k).

lrα′(wi,k) − τ ≤ lr(wi,k) ≤ lrα′(wi,k) + α, ∀ rP , i, k. (3)

Proof. The lower bound corresponds to a processing time of length 0 which is increased to
τ . The upper bound corresponds to a processing time of length jτ + α which is decreased
to jτ , ∀j = 1, . . . , a.
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Identically to PMF/IJ, it can be shown that the processing time dis-
cretized by PMF/nIJ is a monotonic, decreasing, function of α. However,
in contrast to PMF/IJ, an α cannot always be found in order to fit the
original expectation. The continuity can be proved under the same assump-
tion but an α cannot always be found so that the discretized expectation is
smaller than the original one (it happens if the expectation of the original
distribution is smaller than τ).

Proposition 4. Discretizing by PMF/nIJ, with two parameters α such that
α1 ≤ α2, and a constant, the first discretized processing time will always be
larger than the second one.

lrα′
1
(wi,k) ≥ lrα′

2
(wi,k), ∀ rP , i, k.

Proof. As for Proposition 2, jτ1 + α1 ≤ jτ2 + α2, ∀ j, as jτ + α = j((max− α)/a) + α =
(j max + α(a − j))/a, and as j ≤ a. In order to prove the proposition, three cases have
to be considered. In the first case, the original processing time lies between 0 and α2.
We thus get lrα′

2

(wi,k) = τ2 and lrα′

1

(wi,k) = τ1 (since τ1 + α1 > α2) and, as τ1 ≥ τ2

(τ = (max− α)/a), the inequality is satisfied. In the second case, the original processing
time lies between (j−1)τ2+α2 and jτ1+α1 (where j = 1 . . . a). We thus get lrα′

2

(wi,k) = jτ2

and lrα′

1

(wi,k) = jτ1 and, as τ1 ≥ τ2, the proposition inequality is valid in this case. In the

third case, the original processing time lies between jτ1 + α1 and jτ2 + α2. We thus get
lrα′

2

(wi,k) = jτ2 and lrα′

1

(wi,k) = (j + 1)τ1 and this ends the proof.

2.4 Advantages and weaknesses

We end the presentation of probability masses fitting by a short discussion
presenting its main advantages and weaknesses (especially compared to mo-
ments fitting) and the differences between PMF with or without instant job.
The main advantages of probability masses fitting are the following.

• The idea of PMF is simple and intuitive. It is natural and easy to
understand.

• It preserves the shape of the distribution. In fact, it could have been
called “shape fitting”. Moreover, we show further on that this stays
true for the computed throughput distribution.

• PMF is particularly natural when the data about the processing time
distributions is collected in the form of histograms, the most common
form in practice.

• It is intelligible: it offers a strong control on the transformation of
the individual processing times. The transformation of each original
processing time to a discrete processing time is exactly known.
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• As a result of the previous advantage, PMF allows to get bounds on
the productivity.

• It is refinable: the accuracy improves when the number a of discrete
values increases. Moreover, at the limit, when the step size decreases,
PMF leads to the exact original distribution.

• As will be shown later on, PMF leads to accurate estimations of the
performance measures of the manufacturing system.

However, probability masses fitting has, of course, some weaknesses.

• PMF does not, in general, conserve the moments of the distribution.
However, we showed that, using PMF with instant jobs, the parameter
α can be chosen in order to conserve the expectation, if the original
cumulative distribution function is continuous (see section 2.2).

• For the PMF to be applied as defined here, the distributions have to
have a finite domain. Note that this is always the case in practice.

• PMF is badly suited for processing time distributions including rare
events. Indeed, rare events extend the width of the distribution, lead-
ing to many zero discrete values in the discrete distribution, and in-
crease the complexity without improving the accuracy.

Finally, to compare both PMF alternatives, with or without job, we can say
that instant jobs have a positive contribution on the accuracy of the distribu-
tion fitting, but at the expense of a more complex modelling. This trade–off
will be studied in more details by computational experiments (see section 5).
Instant jobs also lead to better bounds, in particular lower bounds. More-
over, PMF/IJ has the advantage that it allows, by choosing the adequate
shift parameter α, to preserve the expectation of the original distribution.

3 Method

In the introduction, we described the modelling process of a manufacturing
system as being composed of two steps: a tractable distributions build-
ing preempting the analytical modelling. Our originality lies in the first
step, where we use probability masses fitting. PMF has now been well de-
fined in the previous section. We are in a position to present the complete
modelling method. In very few words, from the discrete processing time
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distributions built by probability masses fitting, the evolution of the manu-
facturing system is described by a Markov chain, using a state model, and
the performance measures of the system can then be estimated from the
chain.

We present the modelling method for flow lines. However, note that the
approach could be applied to more complex manufacturing systems (assem-
bly/disassembly systems in particular). We are interested in flow lines with
asynchronous part transfer and stochastic processing times. They are made
of a series of m stations separated by m−1 finite buffers. The items are pro-
cessed sequentially by the stations and stored in the buffers between them
when necessary. Such lines experience productivity losses due to blocking
and starving. First, a station is said to be blocked when it cannot get rid of
an item because the next buffer is full. Second, a station is said to be starved
when it cannot begin to work on a new item because the previous buffer is
empty. Increasing buffer sizes allows to limit these productivity losses. We
make a few classical assumptions on the production lines we analyze. None
of them is restrictive in practice. First, the processing times are generally
distributed but finite. Second, the buffer sizes are finite. These finiteness
assumptions are not restrictive since they are always satisfied in practice.
Third, we suppose that the line operates under saturation, i.e. the first sta-
tion is never starved and the last station is never blocked. This assumption
can easily be relaxed using an initial and a last station modelling the real
arrival process and the real demand. Finally, the blocking policy is chosen
to be blocking after service (a blocked job stays in station, after having been
processed), the most common in manufacturing. The model could easily be
modified in order to follow another policy.

The manufacturing systems it models being well defined, we now present
the proposed global modelling method. The first step of the method
builds discrete distributions by probability masses fitting (see section 2). To
begin, the number of discrete values, a, and the parameter α are chosen (the
number a is chosen for the longest distribution, it is consistently smaller for
shorter distributions). The interval width τ is inferred from (1). Note that
τ has to be the same for each station’s distribution. Every processing time
distribution is then transformed into a discrete distribution by PMF, i.e. by
aggregating the probability mass in the interval ((j −1)τ +α, jτ +α] on the
point jτ , for j = 1, 2, . . . , a, and the mass in [0, α] on 0 if PMF/IJ is used
or τ if PMF/nIJ is used.

The discrete distribution can easily be formulated as a discrete phase–
type distribution. An analytical model can then be used. Here, we use

10



a state model, which has the advantage to be exact. Approximate mod-
els (decomposition or expansion) could also be applied. The evolution of
the production system is described by a Markov chain whose states are the
possible combinations of the stages of the various stations and the utiliza-
tions of the various buffers. The performance of the production system can
then be estimated from the analysis of the Markov chain. Transient perfor-
mances, like the throughput at some time t, can be derived from the matrix
of transition probabilities. The steady–state performances (the cycle time,
the work in progress or the flow time for example) can be computed from
the steady–state probabilities derived from the Markov chain.

The method has been named “Bounding Discrete Phase–type” (BDPH)
since it relies on a discrete phase–type approximation of the various dis-
tributions of the system to be studied and since it leads to bounds [15].
If necessary, we specify if PMF/IJ or PMF/nIJ is used by the notations
BDPH/IJ and BDPH/nIJ.

The method can be more clearly understood when explained on a simple
example. Let us consider a line made of two stations separated by a buffer
of size one. Figure 3 shows the application of the BDPH method, with both
probability masses fitting alternatives: PMF/IJ and PMF/nIJ. Figure 3.a
shows the real processing time distributions. The method can be applied
directly to the distributions or on the histograms collected from them, as
it is often the case in practice (figure 3.b). Our method works as follows.
To begin, PMF transforms the distributions into the discrete distributions
shown in figure 3.c, with two non–zero discrete values (a = 2) and α/τ =
1/2, i.e. aggregating the probability mass in the middle of the interval. The
discrete processing time distributions can easily be represented as phase–
type distributions (figure 3.d). Then, the behavior of the system can be
modeled by a Markov Chain, i.e. using a state model. The Markov chains
given in figure 3.e list all the possible recurrent states of the system and the
transitions between these states. The first symbol of a state refers to the
first station, the second to the buffer and the third to the second station.
Each station can be starved (S), blocked (B) or in some stage of service (for
example, 1 means that the station already spent one time step working on
the current job). Each buffer is described by its utilization (0 or 1 for a buffer
of size one). For example, state B12 means that the first station is blocked,
that the buffer is full and that the second station already worked during
two time steps on the current job. From a Markov chain and its stationary
probabilities, the performance measures can be computed. For example, the
idle (blocked/starved) probability of a machine is easily computed and the
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Figure 3: Steps of the BDPH method (with instant jobs in the upper part
and without in the lower part) applied to a two–station line with pro-
cessing times (a) collected in the form of histograms (b): construction of
the tractable discrete distributions by PMF (c), PH representation (d) and
Markov chain modelling the evolution of the line (e).

productivity easily deduced from it.
In figure 3, the difference between probability masses fitting with or

without instant job appears, of course, in the processing time distributions
(the first step of the PMF/nIJ case gathers two intervals of the PMF/IJ case)
and, more interestingly, in the Markov chains that model the evolution of the
system. The chain obtained when instant jobs are possible has more states
and is clearly more dense. This will affect the speed of the method, in the
construction of the chain as well as in its resolution, making the BDPH/IJ
method slower (see section 5 for computational times).

The difference comes from the fact that instant jobs make some transi-
tions possible, while they are impossible with PMF/nIJ. For example, using
PMF without instant job, four transitions are possible from 101, depending
if the stations continue to work on the same job or end. If the first station
ends and the second one continues, the new state will be 112 as the first
station will put its finished item in the buffer and begin to work on another
one, while the second station will work on the same item for a second time
step. If both stations finish their jobs, the first station will pass the item
to the second station and both of them will begin a new job, leading to the
state 101 again. The two other transitions from 101, and, finally, the whole
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Markov chain can be found following this logic. If PMF with instant jobs is
used, more transitions are possible. As can be seen on figure 3, eight transi-
tions are possible from state 101, compared to four when PMF/nIJ is used.
Let us have look at the transitions from 101, as we did for PMF/nIJ. If the
first station ends and the second one continues its job, a possible transition
leads to 112 (as for PMF/nIJ). However, if an instant job occurs on the first
station, it will block the station and lead to B12. In a second case, if both
stations finish their jobs, the transition from 101 to 101 is also possible. It
takes place if no instant job occurs, as well as if an equal number of instant
jobs occur on each station (an infinite number of them is possible, as they
can occur simultaneously on every station). A transition from 101 to B11,
for example, is also possible if two more instant jobs occur in the first sta-
tion, filling the buffer and blocking the station. The Markov chain and its
transition probabilities can be found applying this logic for every state.

To conclude this section, we comment on the complexity of the pro-
posed method. The size of the Markov chain is, in first approximation,
proportional to the number of individual stations and buffer states combi-
nations, i.e.

∏m
i=1(ai+2) ·

∏m
i=2(bi+1) with m the number of stations, ai the

number of non–zero discrete values in the discretized processing time distri-
bution of station i, and bi the size of buffer i. Note that this is a pessimistic
estimation as a non–negligible amount of these individual combinations are
impossible. It can be seen from the formula that the complexity increases
when the number of discrete values a increases, in other words when the
discrete time step τ decreases (leading to better accuracy). There is thus
a clear trade–off between complexity and accuracy, which can be directly
controlled by the parameter a. The size of the Markov chain also quickly in-
creases with the complexity of the system’s configuration (number of stations
and buffer sizes). The explosion of the state space is the main limitation of
the approach, to deal with realistic cases. It is essentially due to the fact
that a state model is used in the last step of the method, and is quite inde-
pendent of the discretization by probability masses fitting. This weakness
can be overcome as usual when exact methods become too complex: using
approximate methods. Decomposition or expansion models could be applied
after probability masses fitting (see section 1).
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4 Properties

In this section, our goal is to translate the properties we observed on proba-
bility masses fitting to the global modelling method. First, we reach one of
the main results obtained thanks to probability masses fitting: upper and
lower bounds on the productivity. Second, we show the monotonicity of the
computed productivity in the shift parameter α. Third, we argue that the
distribution shape conservation stays true for the computed productivity.

4.1 Bounding Methodology

In this subsection, we present the bounding methodology that shows that
the BDPH method leads to bounds on the productivity. This methodology
relies on two ideas. First, it involves an intelligible transformation, i.e. with
good knowledge of its effect on the processing times. Second, the concept
of critical path allows to translate the effect of the transformation to the
global time.

In order to present the bounding methodology in a general form, we
use the following formalism. We consider a probability masses fitting which
transforms the original processing time lr(wi,k) to the discrete processing
time l̃r(wi,k), such that lr(wi,k) can be bounded using its discretized value
as followss:

l̃r(wi,k) − δ− ≤ lr(wi,k) ≤ l̃r(wi,k) + δ+, ∀ rP , i, k. (4)

The terms δ− and δ+ stands for the maximum value by which a processing
time can be increased and decreased, respectively, when discretized. Using
PMF with instant jobs, we have δ− = (τ − α) and δ+ = α. Using PMF
without instant job, we have δ− = τ and δ+ = α.

4.1.1 Critical path

The notion of critical path is the key idea that allows to translate the prop-
erties of probability masses fitting on processing times to properties on the
global production time. The notion of critical path has been introduced in a
previous communication [16]. We recall its definition and a useful property.
The critical path relies on the structural property of the manufacturing sys-
tem. This property can be found for example in [8] for fork–join queueing
networks with blocking. We state it for the particular case of flow lines in
the following lemma. The moments job wi,k starts and ends are denoted
tstart(wi,k) and tend(wi,k).
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Lemma 5. (Structural property of a flow line) Given an m–station
flow line including a buffer of size bi before each station i, the moment a job
starts is given by the following equation, ∀ i, k:

tstart(wi,k) = max[ tend(wi−1,k), (5)

tend(wi,k−1), (6)

tend(wi+1,k−bi+1−2), (7)

tend(wi+2,k−bi+1−bi+2−3), (8)

. . . ,

tend(wm,k−
∑m

j=i+1 bj−(m−i+1)) ]. (9)

Where, for notation purpose, tend(w0,k) = 0,∀ k.

This equation can easily be understood. In a few words, because of the
line structure, a job k can only be started on station i: (5) if its processing
in the previous station i−1 is ended, (6) if the processing of the previous job
k − 1 in station i is ended and (7-9) if this previous job k − 1 is not blocked
in station i by some unfinished jobs downstream. Furthermore, since there
is no reason to wait once all these conditions are satisfied, tstart(wi,k) will
be given by the maximum of the right hand sides of Lemma 5.

The critical path of rP , denoted cp(rP ), is defined as the sequence of
jobs that covers the production run rP (producing P units) without gap and
without overlap. By definition, the length of a run rP (in other words the
time to produce P units in this particular run) can thus be written as a sum
of job lengths:

l(rP ) =
∑

wi,k∈cp(rP )

lr(wi,k). (10)

The critical path can be built quite easily. Starting with the last job that
leaves the system, wm,P , we can look which job end, in this precise run, has
triggered its start. Repeating this process, we can proceed backwards in
time until the start of the run, as every job start is triggered by the end of
another job. It follows that every run rP has at least one critical path.

The notion of critical path is well illustrated on the Gantt chart asso-
ciated to a particular run. An example is given in figure 4. It can be seen
that the critical path covers r11 and that each couple of successive jobs cor-
responds to one of the terms (5–9). The “most perceptive readers” can also
observe on figure 4 that the predecessor of a job in the critical path can
be deduced from the state of the same station just before this job. If the
station is previously working, the predecessor is obviously on the same sta-
tion. If the station is previously starved, the predecessor is on the previous
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Figure 4: Gantt chart of a run r11 on a three station line with buffers of
size one. The critical path is given in gray. The time goes from left to right.
The state of a station at a given time is represented either by a letter (B
for blocked, S for starved) or by the job currently processed. The state of a
buffer is represented by its current utilization.

station (w3,11 to w2,11 for example). If the station is previously blocked, the
predecessor is on a later station (w2,11 to w3,8). In the second case, the same
item is twice in the critical path (item 11 in the example). In the third case,
the

∑

(bi + 1) items between both stations are “omitted” (items 9 and 10).
From these observations, an upper bound can be inferred on |cp(rP )|, the
cardinality of the critical path, i.e. the number of jobs in it. Indeed, this
upper bound corresponds to the worst case where the critical path goes up
from the last station to the first one, without going down.

Lemma 6. Let rP be a production run on an m–station flow line, the number
of jobs in the critical path satisfies the following upper bound:

|cp(rP )| ≤ P + m − 1.

4.1.2 In a Particular Run

Here, we give the lemma on which the bounding methodology relies. It
shows that, if the processing time is bounded, the time needed to achieve a
given production in a particular run can also be bounded. The run obtained
from the PMF discretization of the original run rP is denoted r̃P , and its
length is denoted l(r̃P ).

Lemma 7. Given a PMF discretization of the processing times lr(wi,k) to
l̃r(wi,k) verifying (4), the time a m–station line takes to produce P units in
a production run rP can be bounded as follows:

l(r̃P ) − δ−(P + m − 1) ≤ l(rP ) ≤ l(r̃P ) + δ+(P + m − 1). (11)

Proof. These bounds follow from equations (4) and (10). However, these equations are
not sufficient since the critical path is not the same in continuous and in discretized time.
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The equation of Lemma 5 is valid for any run: a job wi,k cannot be started before all the
jobs on the right hand side are finished. The absence of overlap in the critical path is thus
independent of the considered run. However, which precise job end will trigger the start
of job wi,k depends on the processing times and thus on the particular run we consider.
In another run, gaps could appear between the job of the sequence cp(rP ). The sequence
cp(rP ) is thus just a non–overlapping path (possibly with gaps) in the discretized run r̃p

and its length is smaller than the length of the critical path cp(r̃p) in r̃p. We get:

l(rP )
(10)
=

∑

wi,k∈cp(rP )

lr(wi,k)
(4)

≤
∑

wi,k∈cp(rP )

(

l̃r(wi,k) + δ+

)

≤
∑

wi,k∈cp(r̃p)

l̃r(wi,k) + δ+|cp(rP )|
(10)
= l(r̃P ) + δ+|cp(rP )|.

As, by Lemma 6, |cp(r̃P )| ≤ P+m−1, we get the right inequality of the present lemma. For
the left inequality, using the same equations and the fact that cp(r̃p) is a non–overlapping
path in the original run rP , we get:

l(rP )
(10)
=

∑

wi,k∈cp(rP )

lr(wi,k) ≥
∑

wi,k∈cp(r̃P )

lr(wi,k)

(4)

≥
∑

wi,k∈cp(r̃P )

(

l̃r(wi,k) − δ−
) (10)

= l(r̃P ) − δ−|cp(r̃P )|.

As |cp(r̃P )| ≤ P + m − 1 (Lemma 6), this ends the proof.

Lemma 7 provides a major result. Considering any sample production
run, bounds on the individual processing times can be extended to bounds
on the time it takes to produce a given production. Unfortunately, this
result cannot yet be directly used since it refers to a sample production run.
For the results to be useful, we need to be able to say something about an
average production run. This point is tackled in the following.

4.1.3 Transient Throughput

We first extend lemma 7 to the expected time TP necessary to reach a given
production P . By definition, TP (T̃P ) equals the sum of the lengths of all
possible original (discretized) runs rP (r̃P ), weighted by their probabilities.
Consequently, we simply have to check that each of the three terms of equa-
tion (11) is weighted in the same way. That comes from the definition of
probability masses fitting. As it aggregates the probability masses, the total
probability in continuous time of all the runs rP which discretize to the same
run r̃P is equal to the probability of this run r̃P in discretized time. As this
is true for each discrete run and as an original run has only one discrete
correspondent, we can extend Lemma 7 to the following proposition.
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Proposition 8. Given a PMF discretization of the processing times lr(wi,k)
to l̃r(wi,k) verifying (4), the expected time TP a m–station line takes to
produce P units can be bounded using T̃P , the expected time to produce P
units computed in the discretized time. We have:

T̃P − δ−(P + m − 1) ≤ TP ≤ T̃P + δ+(P + m − 1). (12)

Proof. By definition, the expected time to produce P , TP , equals the sum of the lengths
of all possible runs rP , weighted by their probabilities. More formally, we have: TP =
∫

f(rP )l(rP )drP , where f(rP ) is the density function of the runs rP . To get (12) from
(11), we have to check that each of the three terms of (11) is weighted in the same way.
We thus relate rP to its discretized correspondent, r̃P (which also produces P ). Let us
note γ(r̃P ) the set of original runs rP (in infinite number) which have the same discretized
correspondent r̃P . We can decompose the previous integral and use lemma 7, to get:

TP =
∑

r̃P

∫

rP ∈γ(r̃P )

f(rP )l(rP )drP ≤
∑

r̃P

(

l(r̃P ) + δ+(P + m − 1)
)

∫

rP ∈γ(r̃P )

f(rP )drP .

As the PMF discretization simply aggregates the probability masses in intervals,
∫

rP ∈γ(r̃P )
f(rP )drP gives the probability of the run r̃P , i.e. P [r̃P ]. As

∑

r̃P
P [r̃P ] = 1, we

get:

TP ≤
∑

r̃P

l(r̃P )P [r̃P ] + δ+(P + m − 1) = T̃P + δ+(P + m − 1).

The way to the lower bound is very similar. Using lemma 7, we get:

TP ≥
∑

r̃P

(

l(r̃P ) − δ−(P + m − 1)
)

∫

rP ∈γ(r̃P )

f(rP )drP = T̃P − δ−(P + m − 1).

Note that bounds on the production reached in a fixed time can be quite
easily derived from the previous proposition.

4.1.4 Steady–State Productivity

When focusing on the steady–state productivity, the results get even simpler.
The cycle time c is defined as the average time, in steady–state, between the
completion of two units by the line, i.e. c = limP→∞ TP /P . The cycle time
in the discretized time is denoted c̃, i.e. c̃ = limP→∞ T̃P /P .

Proposition 9. Given a PMF discretization of the processing times lr(wi,k)
to l̃r(wi,k) verifying (4), the cycle time c can be bounded using c̃, the cycle
time computed in the discretized time:

c̃ − δ− ≤ c ≤ c̃ + δ+. (13)
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Proof. These bounds straightforwardly follows from proposition 8 by dividing (12) by P
and making P → ∞.

Propositions 8 and 9 show that our bounding methodology allows to
extend bounds on the individual processing times to prove bounds on the
productivity, in transient or in steady–state, from below and from above.
The similarity of equations (4) and (13) is remarkable in the present case
of flow lines. We believe that this bounding methodology is an interesting
contribution. It is clear that the approach is not restricted to the present
application. It could be extended to more complex systems (as a critical
path can be defined for them too). Moreover, note that bounds can easily be
inferred on an other performance measure, namely the idle (blocked/starved)
time. Indeed, the latter equals the cycle time minus the processing time, on
which both we have bounds.

The bounding methodology presented in this subsection can be com-
pared to the bounding methodology proposed in [3]. The latter also use the
structural property of the system, in the form of a recursion equation. It is
based on the stochastic ordering of the random variables representing the
processing times. However, direct relations between the processing times
are required, i.e. the additional terms (δ− and δ+) are not allowed.

4.1.5 Bounds by Probability Masses Fitting

The results given earlier can readily be instantiated to probability masses
fitting with or without instant job. We just give the bounds on the cycle
time. Obviously, the bounds on the transient throughput could also be
instantiated.

Corollary 10. The BDPH/IJ method allows to compute upper and lower
bounds on the cycle time. With cα the cycle time in the time discretized by
PMF/IJ, we have:

cα − (τ − α) ≤ c ≤ cα + α.

Proof. This corollary is straightforward from propositions 1 and 9 (δ− = (τ − α) and
δ+ = α).

Corollary 11. The BDPH/nIJ method allows to compute upper and lower
bounds on the cycle time. With cα′ the cycle time in the time discretized by
PMF/nIJ, we have:

cα′ − τ ≤ c ≤ cα′ + α.

Proof. This corollary is straightforward from propositions 3 and 9 (δ− = τ and δ+ =
α).
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Figure 5: The BDPH/IJ method is applied an example. On the left–hand
side, the bounds on the cycle time are computed for various step sizes τ ,
i.e. various numbers a of steps, with α = 0 (▽), 0.25 (♦), 0.5 (⊙), 0.75 (�),
1 (△). On the right–hand side, the cycle time cα is computed for various
parameters α/τ and with 5 (♦), 10 (⊙), 15 (�), or 20 (△) time steps.

These results show that the BDPH method allows to bound the produc-
tivity, from above and from below. Furthermore, the accuracy of the bounds
is related to the selected step size τ . The bounds thus become tighter, and
converge, when the discretization step is decreased, i.e. when the number
of discrete values is increased. In other words, the bounds are refinable.
Moreover, it allows to a priori choose the desired accuracy of the results. Of
course, every accuracy improvement will require additional computational
efforts caused by the increase of the state space size (which can be estimated,
see section 3).

It can also be seen from these corollaries that probability masses fit-
ting with instant jobs offers better bounds than PMF without instant job.
The gap between both bounds is smaller. In particular, PMF/IJ allows to
compute better lower bounds. This is natural since the absence of instant
job requires the interval on which the first probability mass is collected
to be larger (see figure 2), and thus the lower bound on processing times
to be worse. On the left–hand side of figure 5, we draw the bounds ob-
tained by the method with instant jobs, for a three station line with buffers
of size one and processing time distributions beta(2,2), uniform(0,1) and
triangular(0,1,0.5). It can be seen that the bounds get sharper when the
step size τ decreases. Moreover, the figure reveals that PMF/IJ with the
shift parameter α equal to one, i.e. aggregating the probability mass in the
beginning of the interval, leads to the best bounds. It comes from the fact
that the step size τ , and thus the distance between both bounds, decreases
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when α increases (τ = (max − α)/a, see equation (1)). More precisely,
the lower bound shows to be better with α = 1, while nothing can be said
about the upper bound. As will be shown in Section 5 by computational
experiments, this observation appears to be not particular to the present
example.

4.2 Monotonicity

In the previous section, we extended the bounding property of probability
masses fitting to the global modelling method. Similarly, the monotonicity in
α of the discretized processing times can also be extended. It can be shown
using the critical path as well but it is more easily shown as a corollary
of a result given in [2], which uses the fact that the discretized processing
times can be stochastically ordered, and follows the bounding methodology
proposed in [3]. The monotonicity in α of the transient throughput could
be shown in the same way.

Proposition 12. Using the BDPH method with two parameters α such that
α1 ≤ α2, the first cycle time will always be larger than the second one.

cα1 ≥ cα2 and cα′
1
≥ cα′

2
.

Proof. The discretized random variables using α1 or α2 can be compared stochastically.
Proposition 2 (and 4) tells that a realization of the random variable lrα1

(wi,k) (and
lrα′

1

(wi,k)) is always larger than the corresponding realization lrα2
(wi,k) (and lrα′

2

(wi,k)).

We thus have the stochastic ordering inequality lrα1
(wi,k) ≥st lrα2

(wi,k) (and lrα′

1

(wi,k) ≥st

lrα′

2

(wi,k)). The following increasing convex ordering inequalities are straightforwardly

deduced:
lrα1

(wi,k) ≥icx lrα2
(wi,k), and lrα′

1
(wi,k) ≥icx lrα′

2
(wi,k).

Consequently, as flow lines with finite buffers can be modeled by stochastic decision free
Petri nets, Corollary 5.1 of [2] applies and proves the proposition.

These results reveal the evolution of the results of the BDPH method in
function of the shifting parameter α. When α is increased, the cycle time
estimation decreases. Unfortunately, such a monotonic property cannot be
proved on the bounds (corollaries 11 and 10). In the right–hand side of
figure 5, we illustrate the evolution of the cycle time cα in α. The decreasing
characteristic can be clearly observed.

4.3 Shape Conservation

Another interesting property of the probability masses fitting approach lies
in the preservation of the shape of the original distribution (see section 2.4).
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Figure 6: Cycle time distributions for the three stations of a line, with 5
(dashed), 10 (dotted) and 20 (solid) discretization steps (with PMF/nIJ).
The original processing time distributions are also depicted.

Here, like in previous subsections, we want to extend this PMF property to
the global modelling method result. We argue that the shape conservation
extends to the cycle time distributions, i.e. the distributions of the time
between two job exits from a given station.

Let us have a look at the example already analyzed in the previous
subsections: a three station line with buffers of size one and processing time
distributions beta(2, 2), uniform(0, 1) and triangular(0, 1, 0.5). Our method
allows to compute discrete estimations of the cycle time distributions. Figure
6 depicts, for each station, the original processing time distributions and
the computed discrete cycle time distributions. The three graphs clearly
show how starving and blocking impact the cycle time compared to the
raw processing time. The cycle time distributions are computed with 5,
10 and 20 steps. As our method refines and converges when the number
of discretization steps increases, it can be supposed that the cycle time
distribution computed with 20 steps is accurate. Figure 6 reveals that the
shape of a cycle time distribution appears to be independent of the number
of discretization steps used. The distribution is of course more detailed with
20 steps but the distributions computed with 5 or 10 steps show the same
shape. It tends to show that the cycle time distribution estimations with 5
or 10 steps are already good, that their shape is realistic.

In conclusion, we may say that the distribution shape conservation stays
true for the cycle time. Even with 5 or 10 steps, the shape of the cycle
time distribution estimation is already realistic. The computation of a good
cycle time distribution estimation is a significant advantage of our method,
notably compared to moments fitting. The distribution offers more detailed
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information on the behavior of the system, compared to the isolated expec-
tation. It allows to estimate measures such as the variance or the quantiles.
Note that other distributions, such as the distribution of the flow time, can
also be computed.

5 Computational Results

In this section, we show by computational experiments how our modelling
method behaves. The impact of the number of discretization steps and of
the shift parameter α is shown for the bounds as well as for the estimation of
the cycle time. Both probability masses fitting alternatives, with or without
instant job, are distinguished. Moreover, the accuracy levels reached for the
work–in–progress and for the flow time are given. We then compare these
results to the computation time needed to reach them. After that, we study
the impact of the configuration of the line, i.e. the number of stations and
the buffer sizes, on the accuracy of the performance evaluation.

To begin, we study an assortment of 500 three–station flow lines. The
buffer configurations vary from [0 0] up to [2 2]. They are equally shared
out according to the global storage space (sum of both buffer sizes) and
the space is uniformly divided, i.e. we analyze 100 [0 0] configurations,
100 either [1 0] or [0 1] configurations, 100 [1 1] configurations, 100 either
[2 1] or [1 2] configurations, and 100 [2 2] configurations. The processing
time distributions are randomly chosen among the 10 following distribu-
tions: uniform(0,1), beta(1.3,1), beta(2,2), beta(4,4), beta(5.5,6), beta(8,8),
beta(10,9), triangular(0,1,0.5), triangular(0.2,1,0.3) and triangular(0.1,0.9,0.6).
These distributions have various expectations and various coefficients of vari-
ation. The 500 lines are analyzed using both PMF alternatives (with or
without instant job). Five different shift parameters α are used (α/τ =
0, 0.25, 0.5, 0.75, 1) as well as, with PMF/IJ, the parameters α that conserve
the expectations of the original distributions (see proposition 2). The num-
ber a of non–zero values in the discretized distributions varies from five up
to ten. We thus made a total of 33000 (500 lines ·(5 nIJ +6 IJ ) · 6 a)
experiments. The 500 three–station lines were also analyzed by simulation,
in order to assess the accuracy of our method. In the following, we give the
average accuracy gap, in percents, between the results of our method and
the results of the simulation (i.e. |resbdph − ressimu|/ressimu). It is given
for various parameter configurations and for various performance measures.

To begin, we are interested in the bounds on the cycle time. In sub-
section 4.1.5, we argued that probability masses fitting with instant jobs
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a 5 6 7 8 9 10

α/τ = 0 17.4 14.5 12.4 10.9 9.7 8.7
α/τ = 0.25 16.3 13.7 11.8 10.4 9.3 8.4
α/τ = 0.5 15.3 12.9 11.2 9.9 8.8 8
α/τ = 0.75 14.3 12.2 10.6 9.4 8.4 7.6
α/τ = 1 13.4 11.4 10 8.9 8 7.3

Exp. cons. 15.5 13.1 11.3 10 8.9 8.1

Table 1: Average accuracy gap, in percent, reached on the lower bound
by the BDPH/IJ method. The number of non–zero values in the discrete
distribution increases from left to right and the shift parameter α increases
from top to bottom. The last row stands for α chosen in order to conserve
the expectation of the original distributions.

offers better bounds. Moreover, we showed on a simple example that the
lower bound appears to be better with α/τ = 1, i.e. the probability mass is
aggregated in the beginning of the interval. This observation stays true on
the computational experiments, as illustrated in Table 1. This table shows
the accuracy of the lower bound computed with PMF/IJ as a function of
the shift parameter α and the number a of non–zero values in the discretized
distribution. It can be seen that the bound improves when a or α increases.
However, as expected, the bounds are not accurate (it is known that the gap
between both bounds equals the step size τ).

Of course, estimations of the cycle time can also be computed by the
BDPH method. They should lead to better accuracy. The cycle time com-
puted directly in the discretized time is not the best possible estimation
(except whit shift parameters α that conserve the expectation). Indeed, as
previously explained, in general, the distribution discretized by PMF does
not have the same expectation as the original processing time distribution.
But the error on the average processing time is known, as the expectations
of both original and discretized distributions are known. It can thus be
subtracted in order to get a better estimation of the cycle time, which is
composed of the average processing time plus the average idle time. This
estimation thus only includes the error on the idle (blocked/starved) time.
Table 2 shows the accuracy reached with various parameters α and various
number a of non–zero values in the discretized distributions. First of all,
this table show that our method leads to accurate estimations of the cycle
time. The error made by the method amounts to a few tenths of percent.
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a 5 6 7 8 9 10

α/τ = 0 0.63 0.53 0.46 0.42 0.37 0.33
α/τ = 0.25 0.35 0.26 0.22 0.20 0.18 0.16
α/τ = 0.5 0.31 0.22 0.18 0.14 0.12 0.1
α/τ = 0.75 0.51 0.39 0.33 0.28 0.25 0.22
α/τ = 1 0.78 0.63 0.53 0.46 0.41 0.37

Exp. cons. 0.21 0.15 0.13 0.1 0.09 0.08

Comp. time 1.4 s 2.1 s 3.5 s 5.7 s 10 s 18 s

a 5 6 7 8 9 10

α/τ = 0 0.63 0.53 0.46 0.42 0.37 0.33
α/τ = 0.25 0.52 0.38 0.31 0.27 0.23 0.21
α/τ = 0.5 0.31 0.21 0.16 0.13 0.11 0.09
α/τ = 0.75 0.86 0.6 0.47 0.38 0.31 0.27
α/τ = 1 1.21 0.87 0.68 0.56 0.48 0.41

Comp. time 0.2 s 0.3 s 0.7 s 1.7 s 2.2 s 5.8 s

Table 2: Average accuracy gap, in percent, reached on the cycle time es-
timation by the BDPH/IJ method (upper table) and by the BDPH/nIJ
(lower part). The number of non–zero values in the discrete distributions
increases from left to right and the shift parameter α increases from top to
bottom (in each part). The row “Exp. cons.” stands for α that conserve
the expectation. The computational times (in seconds) for the [2 2] buffer
configuration are given in italic.

Of course, the accuracy improves when the number of discretization steps
increases. A 0.1 percent accuracy is reached with a = 10, while a 0.3 per-
cent accuracy is already obtained with five non–zero values in the discretized
distribution. Furthermore, it can be seen that the best results are obtained
with α/τ = 0.5 and with α which conserves the expectation. This is quite
natural: aggregating the probability masses in the middle of the interval of-
fer a better approximation of the distribution. This choice leads to a better
estimation of the cycle time, which means a better estimation of the idle
time. It can also be seen in table 2 that the best absolute results are ob-
tained choosing the shift parameter α in order to conserve the expectation of
the original distribution, using PMF/IJ. However, when the computational
time1 is also taken into account, the best option shows to be PMF/nIJ with

1Using the Gaussian elimination implemented in Matlab
R© on a 2.16 GHz usual PC,

2 GB RAM.
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a 5 6 7 8 9 10

PMF/IJ, α/τ = 0.5 0.38 0.27 0.21 0.17 0.15 0.13
PMF/IJ, Exp. cons. 0.2 0.16 0.13 0.12 0.11 0.1

PMF/nIJ, α/τ = 0.5 0.36 0.23 0.18 0.15 0.12 0.11

a 5 6 7 8 9 10

PMF/IJ, 0.5 0.48 0.34 0.26 0.21 0.18 0.16
PMF/IJ, Exp. cons. 0.26 0.2 0.17 0.14 0.13 0.12

PMF/nIJ, 0.5 0.41 0.27 0.21 0.17 0.14 0.13

Table 3: Average accuracy gap, in percent, reached on the work–in–progress
estimation (upper part) and on the flow time estimation (lower part), using
PMF/IJ as well as PMF/nIJ. The number of non–zero values in the discrete
distribution increases from left to right.

α/τ = 0.5, i.e. probability masses fitting aggregating in the middle of the
interval, without instant job. Indeed, for example, an average gap of 0.21%
is reached in 0.3 seconds with PMF/nIJ while PMF/IJ needs 1.4 seconds.
Similarly, PMF/nIJ leads to an accuracy gap of 0.13% in 1.7 seconds while
PMF/IJ takes 3.5 seconds.

Table 3 show the accuracy gap obtained on two other performance mea-
sures: the work–in–progress (WIP) and the flow time. The WIP is easily
computed from the occupations of the buffers and of the stations while the
flow time is deduced from the Little’s law. The table shows that our method
leads to accurate estimations of these performances measures too. As for
the cycle time, the level of accuracy expresses in tenths of percent. Again,
the PMF/IJ with α that conserve the expectation leads to the better abso-
lute results. When the computation times given in table 2 are taken into
account, it can be seen that, like for the cycle time, PMF/nIJ aggregating in
the middle of the interval reveals to be the best choice. In the computation
of the work–in–progress, for example, an accuracy gap of 0.12% is reached
in 2.2 seconds, compared to 5.7 seconds with PMF/IJ. Concerning the flow
time, a gap of 0.17% is obtained in 1.7 seconds, compared to 3.5 seconds.

At this point, it is interesting to study how the method behaves when
the configuration of the line changes, i.e. when the number of stations and
the buffer sizes vary. For this, we run a new set of experiments: 500 other
flow lines are analyzed. Half of them is made of 2 stations and the other half
is made of 4 stations. As for the three station lines previously studied, the
total storage space (sum of every buffer sizes) vary from zero to four, and
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∑

bi 0 1 2 3 4 Total

2 stations
0.11 0.11 0.13 0.14 0.14 0.13
0.1 s 0.1 s 0.1 s 0.1 s 0.1 s

3 stations
0.15 0.12 0.13 0.12 0.11 0.13
0.1 s 0.2 s 0.3 s 0.4 s 1.7 s

4 stations
0.15 0.12 0.12 0.13 0.12 0.13
0.9 s 1.6 s 4.7 s 54 s 200 s

Total 0.14 0.12 0.13 0.13 0.12 0.13

Table 4: Average accuracy gap, in percent, reached on the cycle time esti-
mation with PMF/nIJ aggregating in the middle of the interval. The results
are given for lines with various number of stations and various total storage
space (sum of every buffer size). The computational times are given in italic.

is uniformly shared out. The processing time distributions are randomly
chosen among the 10 distributions listed previously. For this experiment,
we focus on the cycle time estimation computed by the BDPH/nIJ method
with α/τ = 0.5, i.e. aggregating the probability mass in the middle of the
interval, which showed to be the best option in the previous experiments.
Moreover, we chose a, the number of non–zero values in the discretized
distributions, to be equal to eight. This choice leads to excellent accuracy in
previous experiments (0.13%, see Table 2), while still increasing a only offers
marginal benefit. An other choice of a would lead to the same conclusions.
Again, the 500 new flow lines are also analyzed by simulation, in order to
assess the accuracy of our method. We give the average accuracy gap, in
percents, between the results of our method and the results of the simulation.

From table 4, the first conclusion is obvious: the accuracy of the estima-
tions reveals to be remarkably stable. Whatever the dimension which varies,
the number of stations or the buffer sizes, the accuracy gap observed reveals
to be nearby constant (0.13 ± 0.02%). In other words, the accuracy of the
results does not deteriorate when the configuration gets more complex. This
is another advantage of our method. Table 4 also shows the computational
time needed. It illustrates what we already revealed previously: the com-
plexity, due to the state model, is the main weakness of the global modelling
method. The computational time increases very quickly when the system
gets more complex.

In summary, interesting observations can be drawn from the compu-
tational experiments. First, the best lower bound is offered by PMF/IJ

27



aggregating in the beginning of the interval (α = τ). Second, and most
important, our method computes accurate estimations of the performance
measures (cycle time, work–in–progress and flow time). Average accuracy
gaps express in a few tenths of percent. Even with five non–zero values in
the discretized distributions, i.e. with five phases in the phase–type distri-
butions, excellent accuracy levels are reached (0.3%). Third, the accuracy
level reached by the estimations shows to be remarkably stable when the
system’s configuration changes.

6 Conclusion

We introduce a new approach in order to build tractable phase–type distri-
butions which are required by analytical models of stochastic manufacturing
systems. Called “probability masses fitting” (PMF), its principle is simple:
the probability masses on regular intervals are computed and aggregated on
a single value in the corresponding interval, leading to a discrete distribution.
The place where the value lies in the interval is chosen by the shift param-
eter α. Moreover, two alternative PMF are proposed, generating potential
instant jobs, i.e. processing times of length zero, or not. Two characteristics
follow directly from the definition. First, PMF is refinable: the approxima-
tion becomes more and more accurate when the interval size is decreased
or, equivalently, when the number of intervals is increased. Second, PMF
conserves the shape of the original distribution. However, PMF does not,
in general, conserve the first moments. Two other properties of probability
masses fitting were shown in the text. First, the discretized times allow
to bound the original times. Second, the evolution of the discretized times
in the shift parameter α is a monotonic, decreasing, function. Moreover,
we showed that, using probability masses fitting with instant jobs, the shift
parameter α can be chosen in order to conserve the mean of the original
distribution.

After probability masses fitting, various state–of–the–art analytical mod-
els can be applied. In this paper, we chose a state model. In other words,
from the discrete phase–type distributions built by PMF, the evolution of
the system is modeled by a Markov chain and the performances are eval-
uated from it. A state model has the advantage to be exact but has a
high complexity. The Markov chain size increases quickly when the system
size increases. Here, the method is applied to manufacturing flow lines. The
properties shown on probability masses fitting can be extended to the global
modelling method. The first remarkable result concerns bounds on the pro-
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ductivity. Using the concept of critical path, we prove refinable upper and
lower bounds on the transient throughput and on the cycle time. PMF with
instant jobs leads to tighter bounds and, in particular, a better lower bound
is obtained when the probability masses are aggregated in the beginning of
the interval. Moreover, the monotonocity of PMF can be extended to the
cycle time computed by the global method. Finally, interestingly, the pro-
posed method allows to compute a realistic distribution of the cycle time,
what is a far more detailed information than the isolated expectation and
cannot be computed by other methods.

On computational experiments, our modelling method proves to offer ac-
curate estimations of various performance measures, namely the cycle time,
the work–in–progress and the flow time. Using only five discretization steps,
an accuracy level of 0.3% is reached. Comparing various parameters options,
PMF without instant job aggregating the probability mass in the middle of
the interval appears to be the best choice, in the sense of the trade–off be-
tween accuracy and computational time. When the configuration of the line
(number of stations and buffer sizes) is changed, the results’ accuracy reveals
to be remarkably stable.

In conclusion, we believe that probability masses fitting can be thought
as a valuable alternative in order to build tractable distributions for the
analytical modelling of manufacturing systems. In order to improve its ap-
plicability, and avoid the complexity of state models, approximate analytical
models could be applied after PMF. In particular, decomposition methods
could take advantage of the computation of detailed and realistic distribu-
tions of the cycle time of each station. Moreover, the probability masses
fitting approach could of course be applied to more complex manufacturing
systems, such as assembly/disassembly systems.
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