300 research outputs found
Event-driven Adaptation in COP
Context-Oriented Programming languages provide us with primitive constructs
to adapt program behaviour depending on the evolution of their operational
environment, namely the context. In previous work we proposed ML_CoDa, a
context-oriented language with two-components: a declarative constituent for
programming the context and a functional one for computing. This paper
describes an extension of ML_CoDa to deal with adaptation to unpredictable
context changes notified by asynchronous events.Comment: In Proceedings PLACES 2016, arXiv:1606.0540
A Context-Oriented Extension of F#
Context-Oriented programming languages provide us with primitive constructs
to adapt program behaviour depending on the evolution of their operational
environment, namely the context. In previous work we proposed ML_CoDa, a
context-oriented language with two-components: a declarative constituent for
programming the context and a functional one for computing. This paper
describes the implementation of ML_CoDa as an extension of F#.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694
Differential Privacy versus Quantitative Information Flow
Differential privacy is a notion of privacy that has become very popular in
the database community. Roughly, the idea is that a randomized query mechanism
provides sufficient privacy protection if the ratio between the probabilities
of two different entries to originate a certain answer is bound by e^\epsilon.
In the fields of anonymity and information flow there is a similar concern for
controlling information leakage, i.e. limiting the possibility of inferring the
secret information from the observables. In recent years, researchers have
proposed to quantify the leakage in terms of the information-theoretic notion
of mutual information. There are two main approaches that fall in this
category: One based on Shannon entropy, and one based on R\'enyi's min entropy.
The latter has connection with the so-called Bayes risk, which expresses the
probability of guessing the secret. In this paper, we show how to model the
query system in terms of an information-theoretic channel, and we compare the
notion of differential privacy with that of mutual information. We show that
the notion of differential privacy is strictly stronger, in the sense that it
implies a bound on the mutual information, but not viceversa
Typing Context-Dependent Behavioural Variation
Context Oriented Programming (COP) concerns the ability of programs to adapt
to changes in their running environment. A number of programming languages
endowed with COP constructs and features have been developed. However, some
foundational issues remain unclear. This paper proposes adopting static
analysis techniques to reason on and predict how programs adapt their
behaviour. We introduce a core functional language, ContextML, equipped with
COP primitives for manipulating contexts and for programming behavioural
variations. In particular, we specify the dispatching mechanism, used to select
the program fragments to be executed in the current active context. Besides the
dynamic semantics we present an annotated type system. It guarantees that the
well-typed programs adapt to any context, i.e. the dispatching mechanism always
succeeds at run-time.Comment: In Proceedings PLACES 2012, arXiv:1302.579
Differential Privacy: on the trade-off between Utility and Information Leakage
Differential privacy is a notion of privacy that has become very popular in
the database community. Roughly, the idea is that a randomized query mechanism
provides sufficient privacy protection if the ratio between the probabilities
that two adjacent datasets give the same answer is bound by e^epsilon. In the
field of information flow there is a similar concern for controlling
information leakage, i.e. limiting the possibility of inferring the secret
information from the observables. In recent years, researchers have proposed to
quantify the leakage in terms of R\'enyi min mutual information, a notion
strictly related to the Bayes risk. In this paper, we show how to model the
query system in terms of an information-theoretic channel, and we compare the
notion of differential privacy with that of mutual information. We show that
differential privacy implies a bound on the mutual information (but not
vice-versa). Furthermore, we show that our bound is tight. Then, we consider
the utility of the randomization mechanism, which represents how close the
randomized answers are, in average, to the real ones. We show that the notion
of differential privacy implies a bound on utility, also tight, and we propose
a method that under certain conditions builds an optimal randomization
mechanism, i.e. a mechanism which provides the best utility while guaranteeing
differential privacy.Comment: 30 pages; HAL repositor
Formal executable descriptions of biological systems
The similarities between systems of living entities and systems of concurrent processes may support biological experiments in silico. Process calculi offer a formal framework to describe biological systems, as well as to analyse their behaviour, both from a qualitative and a quantitative point of view. A couple of little examples help us in showing how this can be done. We mainly focus our attention on the qualitative and quantitative aspects of the considered biological systems, and briefly illustrate which kinds of analysis are possible. We use a known stochastic calculus for the first example. We then present some statistics collected by repeatedly running the specification, that turn out to agree with those obtained by experiments in vivo. Our second example motivates a richer calculus. Its stochastic extension requires a non trivial machinery to faithfully reflect the real dynamic behaviour of biological systems
- …