19 research outputs found

    Upper Limb Sensory-Motor Control During Exposure to Different Mechanical Environments in Multiple Sclerosis Subjects With No Clinical Disability

    Get PDF
    Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease resulting in motor impairments associated with muscle weakness and lack of movement coordination. The goal of this work was to quantify upper limb motor deficits in asymptomatic MS subjects with a robot-based assessment including performance and muscle synergies analysis. A total of 7 subjects (MS: 3 M-4 F; 42 +/- 10 years) with clinically definite MS according to McDonald criteria, but with no clinical disability, and 7 age- and sex-matched subjects without a history of neurological disorders participated in the study. All subjects controlled a cursor on the computer screen by moving their hand or applying forces in 8 coplanar directions at their self-selected speed. They grasped the handle of a robotic planar manipulandum that generated four different environments: null, assistive or resistive forces, and rigid constraint. Simultaneously, the activity of 15 upper body muscles was recorded. Asymptomatic MS subjects generated less smooth and less accurate cursor trajectories than control subjects in controlling a force profile, while the end-point error was significantly different also in the other environments. The EMG analysis revealed different muscle activation patterns in MS subjects when exerting isometric forces or when moving in presence of external forces generated by a robot. While the two populations had the same number and similar structure of muscle synergies, they had different activation profiles. These results suggested that a task requiring to control forces against a rigid environment allows better than movement tasks to detect early sensory-motor signs related to the onset of symptoms of multiple sclerosis and to differentiate between stages of the disease

    Learning new movements after paralysis: Results from a home-based study

    Get PDF
    open8siBody-machine interfaces (BMIs) decode upper-body motion for operating devices, such as computers and wheelchairs. We developed a low-cost portable BMI for survivors of cervical spinal cord injury and investigated it as a means to support personalized assistance and therapy within the home environment. Depending on the specific impairment of each participant, we modified the interface gains to restore a higher level of upper body mobility. The use of the BMI over one month led to increased range of motion and force at the shoulders in chronic survivors. Concurrently, subjects learned to reorganize their body motions as they practiced the control of a computer cursor to perform different tasks and games. The BMI allowed subjects to generate any movement of the cursor with different motions of their body. Through practice subjects demonstrated a tendency to increase the similarity between the body motions used to control the cursor in distinct tasks. Nevertheless, by the end of learning, some significant and persistent differences appeared to persist. This suggests the ability of the central nervous system to concurrently learn operating the BMI while exploiting the possibility to adapt the available mobility to the specific spatio-temporal requirements of each task.openPierella, Camilla; Abdollahi, Farnaz; Thorp, Elias; Farshchiansadegh, Ali; Pedersen, Jessica; Seanez-Gonzalez, Ismael; Mussa-Ivaldi, Ferdinando A.; Casadio, MauraPierella, Camilla; Abdollahi, Farnaz; Thorp, Elias; Farshchiansadegh, Ali; Pedersen, Jessica; Seanez-Gonzalez, Ismael; Mussa-Ivaldi, Ferdinando A.; Casadio, Maur

    Body-Machine Interface Enables People with Cervical Spinal Cord Injury to Control Devices with Available Body Movements: Proof of Concept

    Get PDF
    This study tested the use of a customized body-machine interface (BoMI) for enhancing functional capabilities in persons with cervical spinal cord injury (cSCI). The interface allows people with cSCI to operate external devices by reorganizing their residual movements. This was a proof-of-concept phase 0 interventional nonrandomized clinical trial. Eight cSCI participants wore a custom-made garment with motion sensors placed on the shoulders. Signals derived from the sensors controlled a computer cursor. A standard algorithm extracted the combinations of sensor signals that best captured each participant's capacity for controlling a computer cursor. Participants practiced with the BoMI for 24 sessions over 12 weeks performing 3 tasks: reaching, typing, and game playing. Learning and performance were evaluated by the evolution of movement time, errors, smoothness, and performance metrics specific to each task. Through practice, participants were able to reduce the movement time and the distance from the target at the 1-second mark in the reaching task. They also made straighter and smoother movements while reaching to different targets. All participants became faster in the typing task and more skilled in game playing, as the pong hit rate increased significantly with practice. The results provide proof-of-concept for the customized BoMI as a means for people with absent or severely impaired hand movements to control assistive devices that otherwise would be manually operated

    A computer interface controlled by upper limb muscles: effects of a two weeks training on younger and older adults

    Get PDF
    As the population worldwide ages, there is a growing need for assistive technology and effective human-machine interfaces to address the wider range of motor disabilities that older adults may experience. Motor disabilities can make it difficult for individuals to perform basic daily tasks, such as getting dressed, preparing meals, or using a computer. The goal of this study was to investigate the effect of two weeks of training with a myoelectric computer interface (MCI) on motor functions in younger and older subjects. Twenty people were recruited in the study: thirteen younger (range: 22-35 years old) and seven older (range: 61-78 years old) subjects. Participants completed six training sessions of about 2 hours each, during which the activity of right and left biceps and trapezius were mapped into a control signal for the cursor of a computer. Results highlighted significant improvements in cursor control, and therefore in muscle coordination, in both groups. All participants with training became faster and more accurate, although people in different age range learned with a different dynamic. Results of the questionnaire on system usability and quality highlighted a general consensus about easiness of use and intuitiveness. These findings suggest that the proposed MCI training can be a powerful tool in the framework of assistive technologies for both younger and older subjects groups. Further research is needed to determine the optimal duration and intensity of MCI training for different age groups and to investigate long-term effects of training on physical and cognitive function

    Generation of multi-contact motions with passive joints: Improvement of Sitting Pivot Transfer strategy for paraplegics2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob)

    No full text
    International audienceIn this paper, we present a motion generation method to improve the Sitting Pivot Transfer (SPT) strategy. We propose to analyze the impact of the torque generated on lower limbs by using Functional Electrical Stimulation (FES) on the maximal forces underneath the hands needed for the SPT. This method, based on an optimization process considers a 3D whole body biomechanical model and produces multicontact motions with desired constant knee torque value. From the generated motions, we study the impact of legs muscle stimulation on the arm forces during the SPT motion. This approach highlights the relationship between the lower limbs stimulation and the maximal forces underneath the hands. The generated motions provide a good tradeoff between the minimization of the maximal hand forces and an excessive increase of the lower limb muscular fatigue

    System for personalized robotic therapy and related methods

    No full text
    The present invention provides an apparatus and a method able to estimate motor improvement in real-time during three-dimensional rehabilitation tasks and to consequently dynamically personalize the therapy.The method can be carried out by a computer program. The use of said apparatus for restoring motor functions in a subject suffering from neuromotor impairment is also within the scope of the invention

    A hybrid Body-Machine Interface integrating signals from muscles and motions

    No full text
    Objective.Body-Machine Interfaces (BoMIs) establish a way to operate a variety of devices, allowing their users to extend the limits of their motor abilities by exploiting the redundancy of muscles and motions that remain available after spinal cord injury or stroke. Here, we considered the integration of two types of signals, motion signals derived from inertial measurement units (IMUs) and muscle activities recorded with electromyography (EMG), both contributing to the operation of the BoMI.Approach.A direct combination of IMU and EMG signals might result in inefficient control due to the differences in their nature. Accordingly, we used a nonlinear-regression-based approach to predict IMU from EMG signals, after which the predicted and actual IMU signals were combined into a hybrid control signal. The goal of this approach was to provide users with the possibility to switch seamlessly between movement and EMG control, using the BoMI as a tool for promoting the engagement of selected muscles. We tested the interface in three control modalities, EMG-only, IMU-only and hybrid, in a cohort of 15 unimpaired participants. Participants practiced reaching movements by guiding a computer cursor over a set of targets.Main results.We found that the proposed hybrid control led to comparable performance to IMU-based control and significantly outperformed the EMG-only control. Results also indicated that hybrid cursor control was predominantly influenced by EMG signals.Significance.We concluded that combining EMG with IMU signals could be an efficient way to target muscle activations while overcoming the limitations of an EMG-only control

    Clinical, Kinematic and Muscle Assessment of Bilateral Coordinated Upper-Limb Movements Following Cervical Spinal Cord Injury

    No full text
    Cervical spinal cord injury (cSCI) often results in bilateral impairment of the arms, leading to difficulties in performing daily activities. However, little is known about the neuromotor alterations that affect the ability of individuals with cSCI to perform coordinated movements with both arms. To address this issue, we developed and tested a functional assessment that integrates clinical, kinematic, and muscle activity measures, including the evaluation of bilateral arm movements. Twelve subjects with a C5-C7 spinal lesion and six unimpaired subjects underwent an evaluation that included three tests: the Manual Muscle Test, Range Of Motion test and Arm stabilisation test, a subsection of the “Van Lieshout arm/hand function test”. During the latter, we recorded kinematic and muscle activity data from the upper-body during the execution of a set of movements that required participants to stabilize both arms against gravity at different configurations. Analytical methods, including muscle synergies, spinal maps, and Principal Component Analysis, were used to analyse the data. Clinical tests detected limitations in shoulder abduction-flexion of cSCI participants and alterations in elbows-wrists motor function. The instrumented assessment provided insight into how these limitations impacted the ability of cSCI participants to perform bilateral movements. They exhibited severe difficulty in performing movements involving over-the-shoulder motion and shoulder internal rotation due to altered patterns of activity of the scapular stabilizer muscles, latissimus dorsi, pectoralis, and triceps. Our findings shed light on the bilateral neuromotor changes that occur post-cSCI addressing not only motor deficits, but also the underlying abnormal, weak, or silent muscle activations

    Effects of hemispheric stroke localization on the reorganization of arm movements within different mechanical environments

    No full text
    none8siThis study investigated how stroke’s hemispheric localization affects motor performance, spinal maps and muscle synergies while performing planar reaching with and without assistive or resistive forces. A lesion of the right hemisphere affected performance, reducing average speed and smoothness and augmenting lateral deviation in both arms. Instead, a lesion of the left hemisphere affected the aiming error, impairing the feedforward control of the ipsilesional arm. The structure of the muscle synergies had alterations dependent on the lesion side in both arms. The applied force fields reduced the differences in performance and in muscle activations between arms and among populations. These results support the hypotheses of hemispheric specialization in movement control and identify potential significant biomarkers for the design of more effective and personalized rehabilitation protocols.openPellegrino L.; Coscia M.; Pierella C.; Giannoni P.; Cherif A.; Mugnosso M.; Marinelli L.; Casadio M.Pellegrino, L.; Coscia, M.; Pierella, C.; Giannoni, P.; Cherif, A.; Mugnosso, M.; Marinelli, L.; Casadio, M
    corecore