863 research outputs found
A Global Assessment of Gold, Titanium, Strontium and Barium Pollution Using Sperm Whales (Physeter Macrocephalus) As an Indicator Species
This study provides a global baseline for barium, gold, titanium and strontium as marine pollutants using the sperm whale (Physeter macrocephalus) as an indicator species. Barium, gold, titanium and strontium are metals that are little studied in marine environments. However, their recent emergence as nanomaterials will likely increase their presence in the marine environment. Moreover, nanosized particles are likely to exhibit toxic outcomes not seen in macrosized particles. Biopsies from free ranging sperm whales were collected from around the globe. Total barium levels were measured in 275 of 298 sperm whales tested for barium and collected from 16 regions around the globe. The global mean for barium was 0.93 +/- 0.2ug/g with a detectable range from 0.1 to 27.9ug. Total strontium levels were measurable in all 298 sperm whales producing a global mean level of 2.2 +/- 0.1ug/g and a range from 0.2 to 11.5ug/g. Total titanium levels were also measured in all 298 sperm whales producing a global mean level of 4.5 +/- 0.25ug/g with a range from 0.1 to 29.8ug/g. Total gold levels were detected in 50 of the 194 sperm whales collected from 16 regions around the globe. Detectable levels ranged from 0.1 to 2.3ug/g tissue with a global mean level equal to 0.2 +/- 0.02ug/g. Previous reports of these metals were much lower than the mean levels reported here. The likely explanation is location differences and consistent with this explanation, we found statistically significant variation among regions. These data provide an important global baseline for barium, gold, titanium and strontium pollution and will allow for important comparisons to be made over time to assess the impact of nanomaterials on whales and the marine environment
Theoretical Constraints on the Higgs Effective Couplings
We derive constraints on the sign of couplings in an effective Higgs
Lagrangian using prime principles such as the naturalness principle, global
symmetries, and unitarity. Specifically, we study four dimension-six operators,
O_H, O_y, O_g, and O_gamma, which contribute to the production and decay of the
Higgs boson at the Large Hadron Collider (LHC), among other things. Assuming
the Higgs is a fundamental scalar, we find: 1) the coefficient of O_H is
positive except when there are triplet scalars, resulting in a reduction in the
Higgs on-shell coupling from their standard model (SM) expectations if no other
operators contribute, 2) the linear combination of O_H and O_y controlling the
overall Higgs coupling to fermion is always reduced, 3) the sign of O_g induced
by a new colored fermion is such that it interferes destructively with the SM
top contribution in the gluon fusion production of the Higgs, if the new
fermion cancels the top quadratic divergence in the Higgs mass, and 4) the
correlation between naturalness and the sign of O_gamma is similar to that of
O_g, when there is a new set of heavy electroweak gauge bosons. Next
considering a composite scalar for the Higgs, we find the reduction in the
on-shell Higgs couplings persists. If further assuming a collective breaking
mechanism as in little Higgs theories, the coefficient of O_H remains positive
even in the presence of triplet scalars. In the end, we conclude that the gluon
fusion production of the Higgs boson is reduced from the SM rate in all
composite Higgs models. Our study suggests a wealth of information could be
revealed by precise measurements of the Higgs couplings, providing strong
motivations for both improving on measurements at the LHC and building a
precision machine such as the linear collider.Comment: 37 pages, one figure; v2: improved discussion on dispersion relation
and other minor modifications; version accepted for publication
Viability of MSSM scenarios at very large tan(beta)
We investigate the MSSM with very large tan(beta) > 50, where the fermion
masses are strongly affected by loop-induced couplings to the "wrong" Higgs,
imposing perturbative Yukawa couplings and constraints from flavour physics.
Performing a low-energy scan of the MSSM with flavour-blind soft terms, we find
that the branching ratio of B->tau nu and the anomalous magnetic moment of the
muon are the strongest constraints at very large tan(beta) and identify the
viable regions in parameter space. Furthermore we determine the scale at which
the perturbativity of the Yukawa sector breaks down, depending on the
low-energy MSSM parameters. Next, we analyse the very large tan(beta) regime of
General Gauge Mediation (GGM) with a low mediation scale. We investigate the
requirements on the parameter space and discuss the implied flavour
phenomenology. We point out that the possibility of a vanishing Bmu term at a
mediation scale M = 100 TeV is challenged by the experimental data on B->tau nu
and the anomalous magnetic moment of the muon.Comment: 29 pages, 7 figures. v2: discussion in sections 1 and 4 expanded,
conclusions unchanged. Matches version published in JHE
Light Higgsino from Axion Dark Radiation
The recent observations imply that there is an extra relativistic degree of
freedom coined dark radiation. We argue that the QCD axion is a plausible
candidate for the dark radiation, not only because of its extremely small mass,
but also because in the supersymmetric extension of the Peccei-Quinn mechanism
the saxion tends to dominate the Universe and decays into axions with a sizable
branching fraction. We show that the Higgsino mixing parameter mu is bounded
from above when the axions produced at the saxion decays constitute the dark
radiation: mu \lesssim 300 GeV for a saxion lighter than 2m_W, and mu less than
the saxion mass otherwise. Interestingly, the Higgsino can be light enough to
be within the reach of LHC and/or ILC even when the other superparticles are
heavy with mass about 1 TeV or higher. We also estimate the abundance of axino
produced by the decays of Higgsino and saxion.Comment: 18 pages, 1 figure; published in JHE
Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans
This article describes the fabrication and use of microfluidic devices for investigating spatial orientation behaviors in nematode worms (Caenorhabditis elegans). Until now, spatial orientation has been studied in freely moving nematodes in which the frequency and nature of encounters with the gradient are uncontrolled experimental variables. In the new devices, the nematode is held in place by a restraint that aligns the longitudinal axis of the body with the border between two laminar fluid streams, leaving the animal's head and tail free to move. The content of the fluid streams can be manipulated to deliver step gradients in space or time. We demonstrate the utility of the device by identifying previously uncharacterized aspects of the behavioral mechanisms underlying chemotaxis, osmotic avoidance, and thermotaxis in this organism. The new devices are readily adaptable to behavioral and imaging studies involving fluid borne stimuli in a wide range of sensory modalities
Combining Anomaly and Z' Mediation of Supersymmetry Breaking
We propose a scenario in which the supersymmetry breaking effect mediated by
an additional U(1)' is comparable with that of anomaly mediation. We argue that
such a scenario can be naturally realized in a large class of models. Combining
anomaly with Z' mediation allows us to solve the tachyonic slepton problem of
the former and avoid significant fine tuning in the latter. We focus on an
NMSSM-like scenario where U(1)' gauge invariance is used to forbid a tree-level
mu term, and present concrete models, which admit successful dynamical
electroweak symmetry breaking. Gaugino masses are somewhat lighter than the
scalar masses, and the third generation squarks are lighter than the first two.
In the specific class of models under consideration, the gluino is light since
it only receives a contribution from 2-loop anomaly mediation, and it decays
dominantly into third generation quarks. Gluino production leads to distinct
LHC signals and prospects of early discovery. In addition, there is a
relatively light Z', with mass in the range of several TeV. Discovering and
studying its properties can reveal important clues about the underlying model.Comment: Minor changes: references added, typos corrected, journal versio
Are BRCA1- and BRCA2-related breast cancers associated with increased mortality?
There has been contradictory evidence as to whether BRCA1 associated breast cancers have a poorer prognosis than non-BRCA1 cancers. In this issue of Breast Cancer Research Robson and colleagues provide further evidence for poorer survival in BRCA1 carriers and show that it could be attributed to failure to treat small node-negative grade 3 breast cancers with chemotherapy. There still remains little evidence for a survival difference for BRCA2 related breast cancers. Although the high contralateral breast cancer risk is confirmed by this study there is no real evidence for an increase in ipsilateral recurrence or new primary breast cancers in mutation carriers up to the 10-year point
Concurrent Detection of Circulating Minor Histocompatibility Antigen-Specific CD8+ T Cells in SCT Recipients by Combinatorial Encoding MHC Multimers
Allogeneic stem cell transplantation (SCT) is a potentially curative treatment for patients with hematologic malignancies. Its therapeutic effect is largely dependent on recognition of minor histocompatibility antigens (MiHA) by donor-derived CD8+ T cells. Therefore, monitoring of multiple MiHA-specific CD8+ T cell responses may prove to be valuable for evaluating the efficacy of allogeneic SCT. In this study, we investigated the use of the combinatorial encoding MHC multimer technique to simultaneously detect MiHA-specific CD8+ T cells in peripheral blood of SCT recipients. Feasibility of this approach was demonstrated by applying dual-color encoding MHC multimers for a set of 10 known MiHA. Interestingly, single staining using a fluorochrome- and Qdot-based five-color combination showed comparable results to dual-color staining for most MiHA-specific CD8+ T cell responses. In addition, we determined the potential value of combinatorial encoding MHC multimers in MiHA identification. Therefore, a set of 75 candidate MiHA peptides was predicted from polymorphic genes with a hematopoietic expression profile and further selected for high and intermediate binding affinity for HLA-A2. Screening of a large cohort of SCT recipients resulted in the detection of dual-color encoded CD8+ T cells following MHC multimer-based T cell enrichment and short ex vivo expansion. Interestingly, candidate MiHA-specific CD8+ T cell responses for LAG3 and TLR10 derived polymorphic peptides could be confirmed by genotyping of the respective SNPs. These findings demonstrate the potency of the combinatorial MHC multimer approach in the monitoring of CD8+ T cell responses to known and potential MiHA in limited amounts of peripheral blood from allogeneic SCT recipients
- …