130 research outputs found

    Rice-fish research and development in Asia

    Get PDF
    Joint proceedings of two international workshops on rice-fish farming systems research and development Ă» one held in Ubon, Thailand, on 23-27 October 1988; and the other on 23-27 October 1989 in Nueva Ecija, Philippines; gathering country overviews, production systems, economic and biological interactions, research and extension programs, and on-station and on-farm research activities from Bangladesh, China, India, Indonesia, Korea, Malaysia, the Philippines, Thailand and Vietnam.Rice-fish culture, Integrated farming, Conferences, Asia,

    Resolving Fermi, PAMELA and ATIC anomalies in split supersymmetry without R-parity

    Full text link
    A long-lived decaying dark matter as a resolution to Fermi, PAMELA and ATIC anomalies is investigated in the framework of split supersymmetry (SUSY) without R-parity, where the neutralino is regarded as the dark matter and the extreme fine-tuned couplings for the long-lived neutralino are naturally evaded in the usual approach.Comment: 14 pages, 6 figures. Erroneous results concerning the cascade processes removed. Main results unchange

    Higgs Boson Decay into Hadronic Jets

    Full text link
    The remarkable agreement of electroweak data with standard model (SM) predictions motivates the study of extensions of the SM in which the Higgs boson is light and couples in a standard way to the weak gauge bosons. Postulated new light particles should have small couplings to the gauge bosons. Within this context it is natural to assume that the branching fractions of the light SM-like Higgs boson mimic those in the standard model. This assumption may be unwarranted, however, if there are non-standard light particles coupled weakly to the gauge bosons but strongly to the Higgs field. In particular, the Higgs boson may effectively decay into hadronic jets, possibly without important bottom or charm flavor content. As an example, we present a simple extension of the SM, in which the predominant decay of the Higgs boson occurs into a pair of light bottom squarks that, in turn, manifest themselves as hadronic jets. Discovery of the Higgs boson remains possible at an electron-positron linear collider, but prospects at hadron colliders are diminished substantially.Comment: 30 pages, 7 figure

    Phenomenology of flavor-mediated supersymmetry breaking

    Get PDF
    The phenomenology of a new economical SUSY model that utilizes dynamical SUSY breaking and gauge-mediation (GM) for the generation of the sparticle spectrum and the hierarchy of fermion masses is discussed. Similarities between the communication of SUSY breaking through a messenger sector, and the generation of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to the identification of vector-like messenger fields with FN fields, and the messenger U(1) as a flavor symmetry. An immediate consequence is that the first and second generation scalars acquire flavor-dependent masses, but do not violate FCNC bounds since their mass scale, consistent with effective SUSY, is of order 10 TeV. We define and advocate a minimal flavor-mediated model (MFMM), recently introduced in the literature, that successfully accommodates the small flavor-breaking parameters of the standard model using order one couplings and ratios of flavon field vevs. The mediation of SUSY breaking occurs via two-loop log-enhanced GM contributions, as well as several one-loop and two-loop Yukawa-mediated contributions for which we provide analytical expressions. The MFMM is parameterized by a small set of masses and couplings, with values restricted by several model constraints and experimental data. The next-to-lightest sparticle (NLSP) always has a decay length that is larger than the scale of a detector, and is either the lightest stau or the lightest neutralino. Similar to ordinary GM models, the best collider search strategies are, respectively, inclusive production of at least one highly ionizing track, or events with many taus plus missing energy. In addition, D^0 - \bar{D}^0 mixing is also a generic low energy signal. Finally, the dynamical generation of the neutrino masses is briefly discussed.Comment: 54 pages, LaTeX, 8 figure

    Observation of the astrophysically important 3+ state in 18Ne via elastic scattering of a radioactive 17F beam from 1H

    Get PDF
    The 17F(p, Îł)18 reaction is important in stellar explosions, but its rate has been uncertain because of an expected 3+ state in 18Ne that has never been conclusively observed. This state would provide a strong l = 0 resonance and, depending on its excitation energy, could dominate the stellar reaction rate. We have observed this missing 3+ state by measuring the 1H(17F, p)17F excitation function with a radioactive 17F beam at the ORNL Holifield Radioactive Ion Beam Facility. We find that the state lies at a center-of-mass energy of Er = 599.8 ± 1.5stat ± 2.0sys keV (Ex = 4523.7 ± 2.9keV) and has a width of Γ = 18 ± 2stat ± 1sys keV

    The astrophysically important 3+ state in 18Ne and the 17F(py)18Ne stellar rate

    Get PDF
    Knowledge of the [Formula Presented] reaction rate is important for understanding stellar explosions, but it was uncertain because the properties of an expected but previously unobserved [Formula Presented] state in [Formula Presented] were not known. This state would provide a strong s-wave resonance for the [Formula Presented] system and, depending on its excitation energy, could dominate the stellar reaction rate at temperatures above 0.2 GK. We have observed this missing [Formula Presented] state by measuring the [Formula Presented] excitation function with a radioactive [Formula Presented] beam at the ORNL Holifield Radioactive Ion Beam Facility (HRIBF). We find that the state lies at a center-of-mass energy of [Formula Presented] keV [Formula Presented] and has a width of [Formula Presented] The measured properties of the resonance are only consistent with a [Formula Presented] assignment

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele
    • 

    corecore