90 research outputs found

    Diffusion MRI Findings in Encephalopathy Induced by Immunosuppressive Therapy after Liver Transplantation

    Get PDF
    Neurological complications are common after liver transplantation, as they affect up to one-third of the transplanted patients and are associated with significant morbidity. The introduction of calcineurin inhibitors, cyclosporine A and tacrolimus, in immunosuppressive regimens significantly improved the outcome of solid-organ transplantation even though immunosuppression-associated neurotoxicity remains a significant complication, particularly occurring in about 25% of cases after liver transplantation. The immunosuppressant cyclosporine A and tacrolimus have been associated with the occurrence of major neurological complications, diffuse encephalopathy being the most common. The biochemical and pathogenetic basis of calcineurin inhibitors-induced neurotoxicity are still unclear although several mechanisms have been suggested. Early recognition of symptoms could help reduce neurotoxic event. The aim of the study was to evaluate cerebral changes through MRI, in particular with diffusion-weighted images (DWI) and apparent diffusion coefficient (ADC) maps, in two patients undergoing liver transplantation after immunosuppressive therapy. We describe two patients in which clinical pictures, presenting as a severe neurological condition, early after orthotopic liver transplantation during immunosuppression therapy, showed a different evolution in keeping with evidence of focal-multifocal lesions at DWI and ADC maps. At clinical onset, DWI showed hyperintensity of the temporo-parieto-occipital cortex with normal ADC values in the patient with following good clinical recovery and decreased values in the other one; in the latter case, MRI abnormalities were still present after ten days, until the patient's exitus. The changes in DWI with normal ADC may be linked to brain edema with a predominant vasogenic component and therefore reversible, while the reduction in ADC is due to cytotoxic edema and linked to more severe, nonreversible, clinical picture. Brain MRI and particularly DWI and ADC maps provide not only a good and early representation of neurological complications during immunosuppressant therapy but can also provide a useful prognostic tool on clinical outcome of the patient

    Cerebral hemodynamics on MR perfusion images before and after bypass surgery in patients with giant intracranial aneurysms

    Get PDF
    Preoperative assessment of the anatomy and dynamics of cerebral circulation for patients with giant intracranial aneurysm can improve both outcome prediction and therapeutic approach. The aim of our study was to use perfusion MR imaging to evaluate cerebral hemodynamics in such patients before and after extraintracranial high-flow bypass surgery. METHODS: Five patients with a giant aneurysm of the intracranial internal carotid artery underwent MR studies before, 1 week after, and 1 month after high-flow bypass surgery. We performed MR and digital subtraction angiography, and conventional and functional MR sequences (diffusion and perfusion). Surgery consisted of middle cerebral artery (MCA)-internal carotid artery bypass with saphenous vein grafts (n = 4) or MCA-external carotid artery bypass (n = 1). RESULTS: In four patients, MR perfusion study showed impaired hemodynamics in the vascular territory supplied by the MCA of the aneurysm side, characterized by significantly reduced mean cerebral blood flow (CBF), whereas mean transit time (MTT) and regional cerebral blood volume (rCBV) were either preserved, reduced, or increased. After surgery, angiography showed good canalization of the bypass graft. MR perfusion data obtained after surgery showed improved cerebral hemodynamics in all cases, with a return of CBF index (CBFi), MTT, and rCBV to nearly normal values. CONCLUSION: Increased MTT with increased or preserved rCBV can be interpreted as a compensatory vasodilatory response to reduced perfusion pressure, presumably from compression and disturbed flow in the giant aneurysmal sac. When maximal vasodilation has occurred, however, the brain can no longer compensate for diminished perfusion by vasodilation, and rCBV and CBFi diminish. Bypass surgery improves hemodynamics, increasing perfusion pressure and, thus, CBFi. Perfusion MR imaging can be used to evaluate cerebral hemodynamics in patients with intracranial giant aneurysm.BACKGROUND AND PURPOSE: Preoperative assessment of the anatomy and dynamics of cerebral circulation for patients with giant intracranial aneurysm can improve both outcome prediction and therapeutic approach. The aim of our study was to use perfusion MR imaging to evaluate cerebral hemodynamics in such patients before and after extraintracranial high-flow bypass surgery. METHODS: Five patients with a giant aneurysm of the intracranial internal carotid artery underwent MR studies before, 1 week after, and 1 month after high-flow bypass surgery. We performed MR and digital subtraction angiography, and conventional and functional MR sequences (diffusion and perfusion). Surgery consisted of middle cerebral artery (MCA)-internal carotid artery bypass with saphenous vein grafts (n = 4) or MCA-external carotid artery bypass (n = 1). RESULTS: In four patients, MR perfusion study showed impaired hemodynamics in the vascular territory supplied by the MCA of the aneurysm side, characterized by significantly reduced mean cerebral blood flow (CBF), whereas mean transit time (MTT) and regional cerebral blood volume (rCBV) were either preserved, reduced, or increased. After surgery, angiography showed good canalization of the bypass graft. MR perfusion data obtained after surgery showed improved cerebral hemodynamics in all cases, with a return of CBF index (CBFi), MTT, and rCBV to nearly normal values. CONCLUSION: Increased MTT with increased or preserved rCBV can be interpreted as a compensatory vasodilatory response to reduced perfusion pressure, presumably from compression and disturbed flow in the giant aneurysmal sac. When maximal vasodilation has occurred, however, the brain can no longer compensate for diminished perfusion by vasodilation, and rCBV and CBFi diminish. Bypass surgery improves hemodynamics, increasing perfusion pressure and, thus, CBFi. Perfusion MR imaging can be used to evaluate cerebral hemodynamics in patients with intracranial giant aneurysm

    A robust iterative learning control for continuous-time nonlinear systems with disturbances

    Get PDF
    In this paper, we study the trajectory tracking problem using iterative learning control for continuous-time nonlinear systems with a generic fixed relative degree in the presence of disturbances. This class of controllers iteratively refine the control input relying on the tracking error of the previous trials and some properly tuned learning gains. Sufficient conditions on these gains guarantee the monotonic convergence of the iterative process. However, the choice of the gains is heuristically hand-tuned given an approximated system model and no information on the disturbances. Thus, in the cases of inaccurate knowledge of the model or iteration-varying measurement errors, external disturbances, and delays, the convergence condition is unlikely to be verified at every iteration. To overcome this issue, we propose a robust convergence condition, which ensures the applicability of the pure feedforward control even if other classical conditions are not fulfilled for some trials due to the presence of disturbances. Furthermore, we quantify the upper bound of the nonrepetitive disturbance that the iterative algorithm is able to handle. Finally, we validate the convergence condition simulating the dynamics of a two degrees of freedom underactuated arm with elastic joints, where one is active, and the other is passive, and a Franka Emika Panda manipulator

    The role of time-resolved imaging of contrast kinetics (TRICKS) magnetic resonance angiography (MRA) in the evaluation of head-neck vascular anomalies: A preliminary experience

    Get PDF
    Objectives: In this preliminary report, we describe our experience with time-resolved imaging of contrast kinetics-MR angiography (TRICKS-MRA) in the assessment of head-neck vascular anomalies (HNVAs). Methods: We prospectively studied six consecutive patients with clinically suspected or diagnosed HNVAs. All of them underwent TRICKS-MRA of the head and neck as part of the routine for treatment planning. A digital subtraction angiography (DSA) was also performed. Results: TRICKS-MRA could be achieved in all cases. Three subjects were treated based on TRICKS-MRA imaging findings and subsequent DSA examination. In all of them, DSA confirmed the vascular architecture of HNVAs shown by TRICKS-MRA. In the other three patients, a close follow up to assess the evolution of the suspected haemangioma was preferred. Conclusions: TRICKS sequences add important diagnostic information in cases of HNVAs, helpful for therapeutic decisions and post-treatment follow up. We recommend TRICKSMRA use (if technically possible) as part of routine MRI protocol for HNVAs, representing a possible alternative imaging tool to conventional DSA

    Subcutaneous tumor seeding after biopsy in gliomatosis cerebri

    Get PDF
    We observed a patient with subcutaneous seeding from gliomatosis cerebri with a low-grade histopathology. A 33-year-old woman with neurofibromatosis type 1 presented with progressive headache, diplopia, dysphagia, and a rightward instability. On neurological examination dysarthria, gait ataxia, and left-sided central facial and hypoglossal palsies were determined. MRI of the brain demonstrated diffuse, infiltrative non-enhancing lesions in the pons, both cerebellar hemispheres, the parahippocampal gyrus, and the thalamus. A stereotactic biopsy demonstrated an astrocytoma WHO grade 2. These characteristics confirmed gliomatosis cerebri. Three months later, the patient presented with hydrocephalus and a subcutaneous swelling directly underneath the surgical scar. The subcutaneous swelling was removed and the hydrocephalus was treated by ventriculoperitoneal shunting. Histopathological examination confirmed a subcutaneous manifestation of low-grade oligoastrocytoma. Gliomatosis cerebri with low-grade histology can seed subcutaneously

    Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS)

    Get PDF
    The aim of the study was to evaluate proton magnetic resonance spectroscopy (1H MRS) for noninvasive biological characterisation of neuroblastoma xenografts in vivo. For designing the experiments, human neuroblastoma xenografts growing subcutaneously in nude rats were analysed in vivo with 1H MRS and magnetic resonance imaging at 4.7 T. The effects of spontaneous tumour growth and antiangiogenesis treatment, respectively, on spectral characteristics were evaluated. The spectroscopic findings were compared to tumour morphology, proliferation and viable tumour tissue fraction. The results showed that signals from choline (Cho)-containing compounds and mobile lipids (MLs) dominated the spectra. The individual ML/Cho ratios for both treated and untreated tumours were positively correlated with tumour volume (P<0.05). There was an inverse correlation between the ML/Cho ratio and the viable tumour fraction (r=−0.86, P<0.001). Higher ML/Cho ratios concomitant with pronounced histological changes were seen in spectra from tumours treated with the antiangiogenic drug TNP-470, compared to untreated control tumours (P<0.05). In conclusion, the ML/Cho ratio obtained in vivo by 1H MRS enabled accurate assessment of the viable tumour fraction in a human neuroblastoma xenograft model. 1H MRS also revealed early metabolic effects of antiangiogenesis treatment. 1H MRS could prove useful as a tool to monitor experimental therapy in preclinical models of neuroblastoma, and possibly also in children
    corecore