573 research outputs found

    Towards Low-Threshold, Real-Time Solar Neutrino Detectors

    Get PDF
    We discuss an alternative approach to the detection of solar neutrinos using a coarsely segmented detector based on inverse-beta decay onto 160^{160}Gd or 176^{176}Yb. While it is know that similar approaches, already discussed in the literature, can in principle provide low-threshold, real-time energy spectroscopy with intrinsic background rejection features, the concepts presented here make this scheme possible with lower background and current technology.Comment: 10 pages, 2 figure

    Development of a Gd Loaded Liquid Scintillator for Electron Anti-Neutrino Spectroscopy

    Full text link
    We report on the development and deployment of 11.3 tons of 0.1% Gd loaded liquid scintillator used in the Palo Verde reactor neutrino oscillation experiment. We discuss the chemical composition, properties, and stability of the scintillator elaborating on the details of the scintillator preparation crucial for obtaining a good scintillator quality and stability.Comment: 9 pages, 4 figures, submitted to NIM

    Two Detector Reactor Neutrino Oscillation Experiment Kr2Det at Krasnoyarsk. Status Report

    Full text link
    We consider status of the Kr2Det project aimed at sensitive searches for neutrino oscillations in the atmospheric neutrino mass parameter region around Dm2 ~ 3x10-3 eV2and at obtaining new information on the electron neutrino mass structure (Ue3).Comment: 4 pages in pdf file. Talk presented at NANP-2001 International Conference in Dubna, Russia, June 200

    Observation of Neutrons with a Gadolinium Doped Water Cerenkov Detector

    Full text link
    Spontaneous and induced fission in Special Nuclear Material (SNM) such as 235U and 239Pu results in the emission of neutrons and high energy gamma-rays. The multiplicities of and time correlations between these particles are both powerful indicators of the presence of fissile material. Detectors sensitive to these signatures are consequently useful for nuclear material monitoring, search, and characterization. In this article, we demonstrate sensitivity to both high energy gamma-rays and neutrons with a water Cerenkov based detector. Electrons in the detector medium, scattered by gamma-ray interactions, are detected by their Cerenkov light emission. Sensitivity to neutrons is enhanced by the addition of a gadolinium compound to the water in low concentrations. Cerenkov light is similarly produced by an 8 MeV gamma-ray cascade following neutron capture on the gadolinium. The large solid angle coverage and high intrinsic efficiency of this detection approach can provide robust and low cost neutron and gamma-ray detection with a single device.Comment: 7 pages, 4 figures. Submitted to Nuclear Instruments and Methods,

    Novel Technique for Ultra-sensitive Determination of Trace Elements in Organic Scintillators

    Get PDF
    A technique based on neutron activation has been developed for an extremely high sensitivity analysis of trace elements in organic materials. Organic materials are sealed in plastic or high purity quartz and irradiated at the HFIR and MITR. The most volatile materials such as liquid scintillator (LS) are first preconcentrated by clean vacuum evaporation. Activities of interest are separated from side activities by acid digestion and ion exchange. The technique has been applied to study the liquid scintillator used in the KamLAND neutrino experiment. Detection limits of <2.4X10**-15 g 40K/g LS, <5.5X10**-15 g Th/g LS, and <8X10**-15 g U/g LS have been achieved.Comment: 16 pages, 3 figures, accepted for publication in Nuclear Instruments and Methods

    Double beta decay of 48^{48}Ca

    Get PDF
    48^{48}Ca, the lightest double beta decay candidate, is the only one simple enough to be treated exactly in the nuclear shell model. Thus, the ββ(2ν)\beta\beta(2\nu) half-life measurement, reported here, provides a unique test of the nuclear physics involved in the ββ\beta\beta matrix element calculation. Enriched 48^{48}Ca sources of two different thicknesses have been exposed in a time projection chamber, and yield T1/22ν=(4.31.1+2.4[stat.]±1.4[syst.])×1019_{1/2}^{2\nu} = (4.3^{+2.4}_{-1.1} [{\rm stat.}] \pm 1.4 [{\rm syst.}]) \times 10^{19} years, compatible with the shell model calculations.Comment: 4 pages, LaTex, 3 figures imbedded, PRL forma

    Nuclear Propelled Vessels and Neutrino Oscillation Experiments

    Get PDF
    We study the effect of naval nuclear reactors on the study of neutrino oscillations. We find that the presence of naval reactors at unknown locations and times may limit the accuracy of future very long baseline reactor-based neutrino oscillation experiments. At the same time we argue that a nuclear powered surface ship such as a large Russian ice-breaker may provide an ideal source for precision experiments. While the relatively low reactor power would in this case require a larger detector, the source could be conveniently located at essentially any distance from a detector built at an underground location near a shore in a region of the world far away from other nuclear installations. The variable baseline would allow for a precise measurement of backgrounds and greatly reduced systematics from reactor flux and detector efficiency. In addition, once the oscillation measurement is completed, the detector could perform geological neutrino and astrophysical measurements with minimal reactor background.Comment: 4 pages, 2 figure

    Experimental limits on the proton life-time from the neutrino experiments with heavy water

    Full text link
    Experimental data on the number of neutrons born in the heavy water targets of the large neutrino detectors are used to set the limit on the proton life-time independently on decay mode through the reaction d -> n+?. The best up-to-date limit tau_p > 4 10^23 yr with 95% C.L. is derived from the measurements with D_2O target (mass 267 kg) installed near the Bugey reactor. This value can be improved by six orders of magnitude with future data accumulated with the SNO detector containing 1000 t of D_2O.Comment: LaTeX, 7 pages, 1 table; small typo is correcte

    The Kr2Det project: Search for mass-3 state contribution |U_{e3}|^2 to the electron neutrino using a one reactor - two detector oscillation experiment at Krasnoyarsk underground site

    Get PDF
    The main physical goal of the project is to search with reactor antineutrinos for small mixing angle oscillations in the atmospheric mass parameter region around {\Delta}m^{2}_{atm} ~ 2.5 10^{-3} eV^2 in order to find the element U_{e3} of the neutrino mixing matrix or to set a new more stringent constraint (U_{e3} is the contribution of mass-3 state to the electron neutrino flavor state). To achieve this we propose a "one reactor - two detector" experiment: two identical antineutrino spectrometers with \sim50 ton liquid scintillator targets located at ~100 m and ~1000 m from the Krasnoyarsk underground reactor (~600 mwe). In no-oscillation case ratio of measured positron spectra of the \bar{{\nu}_e} + p \to e^{+} + n reaction is energy independent. Deviation from a constant value of this ratio is the oscillation signature. In this scheme results do not depend on the exact knowledge of the reactor power, nu_e spectra, burn up effects, target volumes and, which is important, the backgrounds can periodically be measured during reactor OFF periods. In this letter we present the Krasnoyarsk reactor site, give a schematic description of the detectors, calculate the neutrino detection rates and estimate the backgrounds. We also outline the detector monitoring and calibration procedures, which are of a key importance. We hope that systematic uncertainties will not accede 0.5% and the sensitivity U^{2}_{e3} ~4 10^{-3} (at {\Delta}m^{2} = 2.5 10^{-3} eV^2) can be achieved.Comment: Latex 2e, 9 pages and 5 ps figure
    corecore