1,904 research outputs found
Brownian Dynamics of charged particles in a constant magnetic field
Numerical algorithms are proposed for simulating the Brownian dynamics of
charged particles in an external magnetic field, taking into account the
Brownian motion of charged particles, damping effect and the effect of magnetic
field self-consistently. Performance of these algorithms is tested in terms of
their accuracy and long-time stability by using a three-dimensional Brownian
oscillator model with constant magnetic field. Step-by-step recipes for
implementing these algorithms are given in detail. It is expected that these
algorithms can be directly used to study particle dynamics in various dispersed
systems in the presence of a magnetic field, including polymer solutions,
colloidal suspensions and, particularly complex (dusty) plasmas. The proposed
algorithms can also be used as thermostat in the usual molecular dynamics
simulation in the presence of magnetic field.Comment: 29 pages, 12 figure
Heat conduction in 2D strongly-coupled dusty plasmas
We perform non-equilibrium simulations to study heat conduction in
two-dimensional strongly coupled dusty plasmas. Temperature gradients are
established by heating one part of the otherwise equilibrium system to a higher
temperature. Heat conductivity is measured directly from the stationary
temperature profile and heat flux. Particular attention is paid to the
influence of damping effect on the heat conduction. It is found that the heat
conductivity increases with the decrease of the damping rate, while its
magnitude agrees with previous experimental measurement.Comment: 4 pages, 2 figures, presented in SCCS2008 conferenc
Seasonal variability of crustal and marine trace elements in the aerosol at Neumayer Station, Antarctica
Wave spectra of 2D dusty plasma solids and liquids
Brownian dynamics simulations were carried out to study wave spectra of
two-dimensional dusty plasma liquids and solids for a wide range of
wavelengths. The existence of a longitudinal dust thermal mode was confirmed in
simulations, and a cutoff wavenumber in the transverse mode was measured.
Dispersion relations, resulting from simulations, were compared with those from
analytical theories, such as the random-phase approximation (RPA),
quasi-localized charged approximation (QLCA), and harmonic approximation (HA).
An overall good agreement between the QLCA and simulations was found for wide
ranges of states and wavelengths after taking into account the direct thermal
effect in the QLCA, while for the RPA and HA good agreement with simulations
were found in the high and low temperature limits, respectively.Comment: 26 pages, 9 figure
Self-Diffusion in 2D Dusty Plasma Liquids: Numerical Simulation Results
We perform Brownian dynamics simulations for studying the self-diffusion in
two-dimensional (2D) dusty plasma liquids, in terms of both mean-square
displacement and velocity autocorrelation function (VAF). Super-diffusion of
charged dust particles has been observed to be most significant at infinitely
small damping rate for intermediate coupling strength, where the
long-time asymptotic behavior of VAF is found to be the product of and
. The former represents the prediction of early theories in
2D simple liquids and the latter the VAF of a free Brownian particle. This
leads to a smooth transition from super-diffusion to normal diffusion, and then
to sub-diffusion with an increase of the damping rate. These results well
explain the seemingly contradictory scattered in recent classical molecular
dynamics simulations and experiments of dusty plasmas.Comment: 10 pages 5 figures, accepted by PR
Assessment of Chimpanzee Nests Detectability on Drone-Acquired Images
As with other species of great apes, chimpanzee numbers have declined during the past decades. Proper conservation of the remaining chimpanzees requires accurate and frequent data on their distribution and density. In Tanzania, 75% of the chimpanzees live at low densities on land outside national parks and little is known about their distribution, density, behavior or ecology. Given the sheer scale of chimpanzee distribution across western Tanzania (>20,000 km2), we need new methods that are time and cost efficient while providing precise and accurate data across broad spatial scales. Scientists have recently demonstrated the usefulness of drones to detect wildlife, including apes. Whilst direct observation of chimpanzees is unlikely given their elusiveness, we investigated the potential of drones to detect chimpanzee nests in the Issa valley, western Tanzania. Between 2015 and 2016, we tested and compared the capabilities of two fixed-wing drones. We surveyed twenty-two plots (50x500m) in gallery forests and miombo woodlands to compare nest observations from the ground with those from the air. We performed mixed-effects logistic regression models to evaluate the impact of image resolution, seasonality, vegetation type, nest height and color on nest detectability. An average of 10% of the nests spotted from the ground were detected from the air. From the factors tested, only image resolution significantly influenced nest detectability on drone-acquired images. We discuss the potential, but also the limitations of this technology for determining chimpanzee distribution and density and provide guidance for future investigation on the use of drones for ape population surveys. Combining traditional and novel technological methods of surveying allows more accurate collection on animal distribution and habitat connectivity that has important implications for apes conservation in an increasingly anthropogenically disturbed landscape
The critical velocity effect as a cause for the H\alpha emission from the Magellanic stream
Observations show significant H\alpha-emissions in the Galactic halo near the
edges of cold gas clouds of the Magellanic Stream. The source for the
ionization of the cold gas is still a widely open question. In our paper we
discuss the critical velocity effect as a possible explanation for the observed
H\alpha-emission. The critical velocity effect can yield a fast ionization of
cold gas if this neutral gas passes through a magnetized plasma under suitable
conditions. We show that for parameters that are typical for the Magellanic
Stream the critical velocity effect has to be considered as a possible
ionization source of high relevance.Comment: 9 pages, 2 figures. accepted, to appear in The Astrophysical Journa
- …
