3 research outputs found

    Optimization of measurements of a biomaterial with the use of metallic substrates and Surface-enhanced Raman spectroscopy (SERS)

    No full text
    Celem pracy jest zastosowanie nowych nanostruktur srebra i z艂ota jako potencjalnych pod艂o偶y SERS do analizy biomateria艂贸w takich jak osocze i kom贸rki. Testowano dwa rodzaje nanostruktur o kszta艂cie plastra miodu spreparowanych na matrycy glinu oraz nanokulek osadzonych na matrycy tlenku tytanu domieszkowanych dodatkowo grafenem. Opieraj膮c si臋 na okre艣lonych ju偶 w艂a艣ciwo艣ci SERS nanostruktur srebra o kszta艂cie plastra miodu zastosowano je do analizy osocza ludzkiego odnosz膮c otrzymane wyniki do widma SERS osocza zarejestrowanych przy u偶yciu najcz臋艣ciej stosowanych w spektroskopii SERS nanokoloidalnych cz膮stek Ag. Poprzez por贸wnanie widm i czynnika wzmocnienia rozpraszania ramanowskiego wykazano i偶 wybrane nanostruktury srebra wykazuj膮 wi臋ksze wzmocnienie pasm osocza ni偶 zol Ag. Opisano r贸wnie偶 rodzaj informacji chemicznej jak膮 mo偶na uzyska膰 z widma SERS osocza wskazuj膮c, i偶 obserwuje si臋 g艂贸wnie pasma 尾-karotenu, bia艂ek, kwas贸w nukleinowych i cytozyny. Analogiczne nanostruktury pokryte warstw膮 z艂ota wykorzystano do okre艣lenia ich zdolno艣ci wzmocnienia sygna艂u ramanowskiego kom贸rek 艣r贸db艂onka. W tym przypadku nie zaobserwowano sygna艂u SERS kom贸rek, prawdopodobnie ze wzgl臋du na s艂ab膮 zdolno艣膰 rozpraszania promieniowania elektromagnetycznego przez tak spreparowane sta艂e pod艂o偶e. Trzecim aspektem pracy by艂o okre艣lenie w艂a艣ciwo艣ci SERS pod k膮tem wzmocnienia powierzchniowego o艣miu nowo spreparowanych pod艂o偶y na bazie srebra, kt贸rych struktura oparta by艂a na modyfikacji matrycy tlenku tytanu. Jako substancji adsorbuj膮cej u偶yto heterocyklicznego zwi膮zku o nazwie zwyczajowej rodanina. Wykazano poprzez analiz臋 wynik贸w obrazowania ramanowskiego, i偶 wszystkie z badanych nanostruktur wykazuj膮 efekt wzmocnienia powierzchniowego rozpraszania ramanowskiego aczkolwiek z r贸偶nym czynnikiem wzmocnienia zale偶nym od rozmiaru nanocz膮stek srebra i obecno艣ci grafenu oraz 偶e profil SERS rodaniny jest zgodny z tym co otrzymano dla koloidalnego roztworu srebra. Badania te wskaza艂y na wysoki potencja艂 analizowanych nanostruktur srebra jako efektywnych pod艂o偶y SERS.The aim of the work is the use of new silver and gold nanostructures as potential substrates for SERS analysis of biomaterials such as blood plasma and cells. Two types of nanostructures were tested with shape of honeycombs crafted on a matrix of aluminum and nanospheres templated on titanium oxide doped with graphene. Based on the SERS characteristics already defined for silver honeycomb nanostructures, firstly they were employed in the analysis of human plasma. Obtained results were compared with reference data achieved for plasma SERS spectra recorded by using of the most common SERS substrates - nanocolloidal Ag particles. The comparison of the collected SERS spectra and the enhancement factor of Raman scattering indicated that the selected silver nanostructures provide higher signal enhancement than Ag sol. Chemical information, which can be gathered from SERS spectrum of plasma includes 尾-carotene, proteins, nucleic acids and cytosine. Analogous nanostructures coated with a gold layer was used to determine their ability to amplify the Raman signal of endothelial cells. In this case, no SERS signal was observed, probably due to low scattering factor of electromagnetic radiation of such nanostructured solid substrates. The third aspect of the work was to determine the SERS properties of the eight newly-designed silver substrates based on modification of titanium oxide template. As an adsorbent a heterocyclic compound rhodanine was used. An analysis of the results obtained from Raman imaging demonstrated that all of the tested nanostructures exhibit surface enhancement of Raman scattering but with a different enhancement factor that dependents on the size of Ag nanoparticles and the presence of graphene. In addition, observed SERS profile rhodanine is consistent with that obtained from the interactions with colloidal silver solution. These studies showed the high potential of the analyzed silver nanostructures as effective SERS substrates

    The test environment-friendly nanocomposites for use on the packaging.

    No full text
    W pracy pokazano mo偶liwo艣ci zastosowania spektroskopii ramanowskiej jako metody badawczej w analizie w艂a艣ciwo艣ci nanokompozytowych folii polimerowych jako nowa grupa materia艂贸w na opakowania. Analizowano dwie folie z polikaprolaktonu (PCL), r贸偶ni膮ce si臋 w艂a艣ciwo艣ciami mechanicznymi, odlewanymi z dw贸ch polimer贸w, o r贸偶nych masach cz膮steczkowych. Te dwa polimery stanowi艂y matryc臋 do wytworzenia nanokompozyt贸w. Wype艂niaczem modyfikuj膮cym i r贸偶nicuj膮cym dwie folie S i N by艂y cz膮stki montmorylonitu (MMT), dodawane w r贸偶nych procentach wagowych (0,5%; 2%). Zbadano 6 r贸偶nych folii, ka偶d膮 z dw贸ch r贸偶nych stron. Nanokompozyty otrzymano na bazie odlewu metod膮 rozpuszczalnikow膮 w roztworze. Wykazano, 偶e na podstawie analiz technik膮 spektroskopii ramanowskiej mo偶na uzyska膰 informacje okre艣laj膮ce zale偶no艣ci struktury-w艂a艣ciwo艣ci materia艂u na bazie intensywno艣ci, powierzchni, krystaliczno艣ci, amorficzno艣ci, oraz r贸偶nicy drga艅 w polimerach. Do analizy u偶yto oprogramowania WiRE v 2.0. Dzi臋ki tym badaniom pokazano zalety nanokompozytu polimerowego z montmorylonitem, jako nowatorskiego nanokompozytu biodegradowalnego w zastosowaniu dla przemys艂u opakowa艅. Analiza bada艅 wykaza艂a r贸wnie偶, 偶e folia S jest lepsz膮 foli膮 dla proponowanych zastosowa艅.The applicability of the Raman spectroscopy method as a test method for a new group of polymer nanocomposites packaging foil materials is shown. Two different polycaprolactone (PCL) films were analyzed, differing with mechanical properties with different molecular weights. These two polymers were the matrix to form nanocomposites. The filler modifying and differentiating two foils S and N were montmorillonite (MMT) particles added in a different molecular weight (0.5%, 2%). Six different foils on the two sides of the films were analyzed. Nanocomposites were obtained by solvent casting method. It was demonstrated that on the basis of Raman spectroscopy analysis, the structure-based material properties calculated as the intensity ratio, crystallinity, amorphous content, and the difference in polymers matrix vibrations were described. The WiRE v 2.0 soft fare was used for the analysis.Thanks to this research it was shown advantages and characteristics of the polymer nanocomposites with montmorillonite as modern biodegradable nanocomposites for packaging industry. The analysis tests also showed that foil S is better use of packaging

    Raman spectroscopy and the material study of nanocomposite membranes from poly(蔚-caprolactone) with biocompatibility testing in osteoblast-like cells

    No full text
    Modern medical treatment can be improved by nanotechnology methods for preparing nanocomposites with novel physical, chemical and biological properties. The materials studied and analysed as membranes were produced from poly(蔚-caprolactone) (PCL), which contained identical amounts of nano-additives, either montmorillonite (MMT) or functionalized multi-walled carbon nanotubes (MWCNT-f), while the reference membranes were obtained from unmodified PCL. In addition to the conventional methods used in the study of materials for medical purposes such as DSC, contact angle measurements, surface topography, Raman spectroscopy was also applied. Raman microspectroscopy can decode the phenomenon that occurs in the polymer in contact with the nanoparticles. Besides identifying the vibrations of certain functional groups, the calculation of crystallinity parameters is also possible, by which the most intense interactions within the nanocomposites can be analysed. The Raman studies indicate that each of the nano-additives reacts differently with the polymer matrix, which results in material properties that influence its biological properties. MWCNT-f interacts preferentially with the oxygen-containing groups, and particularly with the backbone regions in the vicinity of the single CO bond. The human osteoblast-like MG-63 cells, cultured on the PCL/MWCNT-f membrane for three days, show almost 100% viability
    corecore