23 research outputs found

    A serum protein biomarker panel improves outcome prediction in human traumatic brain injury

    Get PDF
    Brain-enriched protein biomarkers of tissue fate are being introduced clinically to aid in traumatic brain injury (TBI) management. The aim of this study was to determine how concentrations of six different protein biomarkers, measured in samples collected during the first weeks after TBI, relate to injury severity and outcome. We included neuro-critical care TBI patients that were prospectively enrolled from 2007 to 2013, all having 1 to 3 blood samples drawn during the first two weeks. The biomarkers analyzed were S100B, neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), tau and neurofilament-Light (NF-L). Glasgow Outcome Score (GOS) was assessed at 12 months. In total, 172 patients were included. All serum markers were associated with injury severity as classified on computed tomography scans at admission. Almost all biomarkers outperformed other known outcome predictors with higher levels the first five days, correlating with unfavorable outcomes, and UCH-L1 (0.260 pseduo-R2) displaying the best discrimination in univariate analyses. After adjusting for acknowledged TBI outcome predictors, GFAP and NF-L added most independent information to predict favorable/unfavorable GOS, improving the model from 0.38 to 0.51 pseudo-R2. A correlation matrix indicated substantial co-variance, with the strongest correlation between UCH-L1, GFAP and tau (r=0.827 to 0.880). Additionally, the principal component analysis exhibited clustering of UCH-L1 and tau, as well as GFAP, S100B and NSE, which was separate from NF-L. In summary, a panel of several different protein biomarkers, all associated with injury severity, with different cellular origin and temporal trajectories, improve outcome prediction models

    The Karolinska NeuroCOVID study protocol: Neurocognitive impairment, biomarkers and advanced imaging in critical care survivors

    Get PDF
    Background: This is the study plan of the Karolinska NeuroCOVID study, a study of neurocognitive impairment after severe COVID-19, relating post-intensive care unit (ICU) cognitive and neurological deficits to biofluid markers and MRI. The COVID-19 pandemic has posed enormous health challenges to individuals and health-care systems worldwide. An emerging feature of severe COVID-19 is that of temporary and extended neurocognitive impairment, exhibiting a myriad of symptoms and signs. The causes of this symptomatology have not yet been fully elucidated. Methods: In this study, we aim to investigate patients treated for severe COVID-19 in the ICU, as to describe and relate serum-, plasma- and cerebrospinal fluid-borne molecular and cellular biomarkers of immune activity, coagulopathy, cerebral damage, neuronal inflammation, and degeneration, to the temporal development of structural and functional changes within the brain as evident by serial MRI and extensive cognitive assessments at 3–12 months after ICU discharge. Results: To date, we have performed 51 3-month follow-up MRIs in the ICU survivors. Of these, two patients (~4%) have had incidental findings on brain MRI findings requiring activation of the Incidental Findings Management Plan. Furthermore, the neuropsychological and neurological examinations have so far revealed varying and mixed patterns. Several patients expressed cognitive and/or mental concerns and fatigue, complaints closely related to brain fog. Conclusion: The study goal is to gain a better understanding of the pathological mechanisms and neurological consequences of this new disease, with a special emphasis on neurodegenerative and neuroinflammatory processes, in order to identify targets of intervention and rehabilitation

    ModelCIF: An Extension of PDBx/mmCIF Data Representation for Computed Structure Models

    Get PDF
    ModelCIF (github.com/ihmwg/ModelCIF) is a data information framework developed for and by computational structural biologists to enable delivery of Findable, Accessible, Interoperable, and Reusable (FAIR) data to users worldwide. ModelCIF describes the specific set of attributes and metadata associated with macromolecular structures modeled by solely computational methods and provides an extensible data representation for deposition, archiving, and public dissemination of predicted three-dimensional (3D) models of macromolecules. It is an extension of the Protein Data Bank Exchange / macromolecular Crystallographic Information Framework (PDBx/mmCIF), which is the global data standard for representing experimentally-determined 3D structures of macromolecules and associated metadata. The PDBx/mmCIF framework and its extensions (e.g., ModelCIF) are managed by the Worldwide Protein Data Bank partnership (wwPDB, wwpdb.org) in collaboration with relevant community stakeholders such as the wwPDB ModelCIF Working Group (wwpdb.org/task/modelcif). This semantically rich and extensible data framework for representing computed structure models (CSMs) accelerates the pace of scientific discovery. Herein, we describe the architecture, contents, and governance of ModelCIF, and tools and processes for maintaining and extending the data standard. Community tools and software libraries that support ModelCIF are also described

    Green-to-red photoconvertible fluorescent proteins: tracking cell and protein dynamics on standard wide-field mercury arc-based microscopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Green fluorescent protein (GFP) and other FP fusions have been extensively utilized to track protein dynamics in living cells. Recently, development of photoactivatable, photoswitchable and photoconvertible fluorescent proteins (PAFPs) has made it possible to investigate the fate of discrete subpopulations of tagged proteins. Initial limitations to their use (due to their tetrameric nature) were overcome when monomeric variants, such as Dendra, mEos, and mKikGR were cloned/engineered.</p> <p>Results</p> <p>Here, we report that by closing the field diaphragm, selective, precise and irreversible green-to-red photoconversion (330-380 nm illumination) of discrete subcellular protein pools was achieved on a wide-field fluorescence microscope equipped with standard DAPI, Fluorescein, and Rhodamine filter sets and mercury arc illumination within 5-10 seconds. Use of a DAPI-filter cube with long-pass emission filter (LP420) allowed the observation and control of the photoconversion process in real time. Following photoconversion, living cells were imaged for up to 5 hours often without detectable phototoxicity or photobleaching.</p> <p>Conclusions</p> <p>We demonstrate the practicability of this technique using Dendra2 and mEos2 as monomeric, photoconvertible PAFP representatives fused to proteins with low (histone H2B), medium (gap junction channel protein connexin 43), and high (α-tubulin; clathrin light chain) dynamic cellular mobility as examples. Comparable efficient, irreversible green-to-red photoconversion of selected portions of cell nuclei, gap junctions, microtubules and clathrin-coated vesicles was achieved. Tracking over time allowed elucidation of the dynamic live-cycle of these subcellular structures. The advantage of this technique is that it can be performed on a standard, relatively inexpensive wide-field fluorescence microscope with mercury arc illumination. Together with previously described laser scanning confocal microscope-based photoconversion methods, this technique promises to further increase the general usability of photoconvertible PAFPs to track the dynamic movement of cells and proteins over time.</p

    MAPK-Activated Protein Kinase 2 Is Required for Mouse Meiotic Spindle Assembly and Kinetochore-Microtubule Attachment

    Get PDF
    MAPK-activated protein kinase 2 (MK2), a direct substrate of p38 MAPK, plays key roles in multiple physiological functions in mitosis. Here, we show for the first time the unique distribution pattern of MK2 in meiosis. Phospho-MK2 was localized on bipolar spindle minus ends and along the interstitial axes of homologous chromosomes extending over centromere regions and arm regions at metaphase of first meiosis (MI stage) in mouse oocytes. At metaphase of second meiosis (MII stage), p-MK2 was localized on the bipolar spindle minus ends and at the inner centromere region of sister chromatids as dots. Knockdown or inhibition of MK2 resulted in spindle defects. Spindles were surrounded by irregular nondisjunction chromosomes, which were arranged in an amphitelic or syntelic/monotelic manner, or chromosomes detached from the spindles. Kinetochore–microtubule attachments were impaired in MK2-deficient oocytes because spindle microtubules became unstable in response to cold treatment. In addition, homologous chromosome segregation and meiosis progression were inhibited in these oocytes. Our data suggest that MK2 may be essential for functional meiotic bipolar spindle formation, chromosome segregation and proper kinetochore–microtubule attachments

    Assembly dynamics of microtubules at molecular resolution

    No full text
    Microtubules are highly dynamic protein polymers that form a crucial part of the cytoskeleton in all eukaryotic cells. Although microtubules are known to self-assemble from tubulin dimers, information on the assembly dynamics of microtubules has been limited, both in vitro and in vivo, to measurements of average growth and shrinkage rates over several thousands of tubulin subunits. As a result there is a lack of information on the sequence of molecular events that leads to the growth and shrinkage of microtubule ends. Here we use optical tweezers to observe the assembly dynamics of individual microtubules at molecular resolution. We find that microtubules can increase their overall length almost instantaneously by amounts exceeding the size of individual dimers (8 nm). When the microtubule-associated protein XMAP215 (ref. 6) is added, this effect is markedly enhanced and fast increases in length of about 40-60 nm are observed. These observations suggest that small tubulin oligomers are able to add directly to growing microtubules and that XMAP215 speeds up microtubule growth by facilitating the addition of long oligomers. The achievement of molecular resolution on the microtubule assembly process opens the way to direct studies of the molecular mechanism by which the many recently discovered microtubule end-binding proteins regulate microtubule dynamics in living cells
    corecore