8 research outputs found

    Solid state polymerization of pet/pc extruded blend: effect of reaction temperature on thermal, morphological and viscosity properties

    No full text
    A systematic study of solid state polymerization (SSP), concerning the melt extruded blend of poly(ethylene terephthalate)/polycarbonate (catalyzed PET/PC, 80/20 wt %), as a function of temperature range (180-190°C) for a fixed time (6 h) is presented. The materials obtained were evaluated by differential scanning calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG), optical microscopy (OM) and intrinsic viscosity (IV) analysis. After SSP, at all reaction temperatures, PET glass transition and heating crystallization temperatures slightly decreased, melting temperature slightly increased, while degree of crystallinity was practically invariable. The DTG curves indicated that, at least, three phases remained. The OM images revealed that the morphology is constituted of a PET matrix and a PC dispersed phase. In the interfacial region we noticed the appearance of structures like bridges linking the matrix and the dispersed domains. These bridges were correlated to the PET/PC block copolymer obtained during blending in the molten state. IV increased for all polymerization temperatures, due to the occurrence of PET chain extension reactions - esterification and transesterification. The IV range for bottle grade PET was achieved

    Properties of recycled high density polyethylene and coffee dregs composites

    No full text
    Composites of recycled high density polyethylene (HDPE-R) and coffee dregs (COFD) were elaborated. The blends were made at the proportions of 100-0, 90-10, 80-20, 70-30, 60-40, 50-50 and 40-60% polymer-filler ratio. The materials were evaluated through scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TGA), and compressive resistance test. The compounding was done using a two-stage co-kneader system extruder, and then cylindrical specimens were injection molded. All composites had a fine dispersion of the COFD into the polymeric matrix. The composites degraded in two steps. The first one was in a temperature lower than the neat HDPE, but higher than the average processing temperature of the polymer. The melting temperature and the degree of crystallinity of the composites resulted similar to the neat HDPE ones. The compressive moduli of the composites resulted similar to the neat polymer one. The results show that these composites have interesting properties as a building material
    corecore