5 research outputs found

    Observation of quantum depletion in a nonequilibrium exciton-polariton condensate

    Full text link
    The property of superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) of interacting bosons. However, even at zero temperature, when one would expect the whole bosonic quantum liquid to become condensed, a fraction of it is excited into higher momentum states via interparticle interactions and quantum fluctuations -- the phenomenon of quantum depletion. Quantum depletion of weakly interacting atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This is even more challenging in driven-dissipative systems such as exciton-polariton condensates(photons coupled to electron-hole pairs in a semiconductor), since their nonequilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of an optically trapped high-density exciton-polariton condensate by directly detecting the spectral branch of elementary excitations populated by this process. Analysis of the population of this branch in momentum space shows that quantum depletion of an exciton-polariton condensate can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the fraction of matter (exciton) in an exciton-polariton. Our results reveal the effects of exciton-polariton interactions beyond the mean-field description and call for a deeper understanding of the relationship between equilibrium and nonequilibrium BECs.Comment: 18 pages, 5 figures, with supplementary informatio

    Observation of gain-pinned dissipative solitons in a microcavity laser

    Get PDF
    We demonstrate an experimental approach for creating spatially localized states in a semiconductor microcavity laser. In particular, we shape the spatial gain profile of a quasi-one-dimensional microcavity laser with a nonresonant, pulsed optical pump to create spatially localized structures, known as gain-pinned dissipative solitons, that exist due to the balance of gain and nonlinear losses. We directly probe the ultrafast formation dynamics and decay of these localized structures, showing that they are created on a picosecond timescale, orders of magnitude faster than laser cavity solitons. All of the experimentally observed features and dynamics are reconstructed by numerical modeling using a complex Ginzburg-Landau model, which explicitly takes into account the carrier density dynamics in the semiconductorThis work was supported by the National Science Center in Poland, by Grant Nos. 2016/23/N/ST3/01350 and 2018/30/E/ST7/00648, and by the Polish National Agency for Academic Exchange. The Würzburg group gratefully acknowledges support by the State of Bavaria. The work at the Australian National University was supported by the Australian Research Council

    Bogoliubov excitations of a polariton condensate in dynamical equilibrium with an incoherent reservoir

    Full text link
    The classic Bogoliubov theory of weakly interacting Bose gases rests upon the assumption that nearly all the bosons condense into the lowest quantum state at sufficiently low temperatures. Here we develop a generalized version of Bogoliubov theory for the case of a driven-dissipative exciton-polariton condensate with a large incoherent uncondensed component, or excitonic reservoir. We argue that such a reservoir can consist of both excitonic high-momentum polaritons and optically dark superpositions of excitons across different optically active layers, such as multiple quantum wells in a microcavity. In particular, we predict interconversion between the dark and bright (light-coupled) excitonic states that can lead to a dynamical equilibrium between the condensate and reservoir populations. We show that the presence of the reservoir fundamentally modifies both the energy and the amplitudes of the Bogoliubov quasiparticle excitations due to the non-Galilean-invariant nature of polaritons. Our theoretical findings are supported by our experiment, where we directly detect the Bogoliubov excitation branches of an optically trapped polariton condensate in the high-density regime. By analyzing the measured occupations of the excitation branches, we extract the Bogoliubov amplitudes across a range of momenta and show that they agree with our generalized theory.Comment: 16 pages, 7 figure

    Observation of quantum depletion in a non-equilibrium exciton-polariton condensate

    Get PDF
    Superfluidity, first discovered in liquid 4He, is closely related to Bose-Einstein condensation (BEC) phenomenon. However, even at zero temperature, a fraction of the quantum liquid is excited out of the condensate into higher momentum states via interaction-induced fluctuations-the phenomenon of quantum depletion. Quantum depletion of atomic BECs in thermal equilibrium is well understood theoretically but is difficult to measure. This measurement is even more challenging in driven-dissipative exciton-polariton condensates, since their non-equilibrium nature is predicted to suppress quantum depletion. Here, we observe quantum depletion of a high-density exciton-polariton condensate by detecting the spectral branch of elementary excitations populated by this process. Analysis of this excitation branch shows that quantum depletion of exciton-polariton condensates can closely follow or strongly deviate from the equilibrium Bogoliubov theory, depending on the exciton fraction in an exciton polariton. Our results reveal beyond mean-field effects of exciton-polariton interactions and call for a deeper understanding of the relationship between equilibrium and non-equilibrium BECs.This work was supported by the Australian Research Council (ARC) through the Centre of Excellence Grant CE170100039. The work at Pittsburgh was funded by the Army Research Office (Grant No. W911NF-15-1-0466). The work of sample fabrication at Princeton was funded by the Gordon and Betty Moore Foundation (GBMF-4420) and by the National Science Foundation MRSEC programme through the Princeton Center for Complex Materials (Grant No. DMR-0819860). J.L. was supported through the Australian Research Council Future Fellowship FT160100244. M.P. would like to acknowledge useful discussions with Ryo Hanai

    Room temperature, continuous wave lasing in microcylinder and microring quantum dot laser diodes

    Get PDF
    This content may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This material originally appeared in Appl. Phys. Lett. 100, 031111 (2012) and may be found at https://doi.org/10.1063/1.3678031.We demonstrate room temperature, continuous wave lasing of laser diodes based on AlGaAs whispering gallery mode (WGM) resonators (microcylinder and microring) embedding a quantum dot (QD) active layer. Using InGaAlAs QDs, high-Q (>60 000) lasing modes are observed around 910 nm, up to 50 °C. Lasing with similar performance is obtained around 1230 nm, using InAs QDs. Furthermore, we show that the current injection in the active part of the device is improved in ring resonators, leading to threshold currents of approximately 4 mA for a device with 80 μm diameter. This geometry also suppresses WGMs with a high radial order, thus simplifying the lasing spectra. In these conditions, stable single-mode and two-color lasing can be obtained.EC/FP7/250056/EU/Terahertz room-temperature integrated parametric source/TREASUR
    corecore