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ABSTRACT
We demonstrate an experimental approach for creating spatially localized states in a semiconductor microcavity laser. In particular, we shape
the spatial gain profile of a quasi-one-dimensional microcavity laser with a nonresonant, pulsed optical pump to create spatially localized
structures, known as gain-pinned dissipative solitons, that exist due to the balance of gain and nonlinear losses. We directly probe the ultrafast
formation dynamics and decay of these localized structures, showing that they are created on a picosecond timescale, orders of magnitude
faster than laser cavity solitons. All of the experimentally observed features and dynamics are reconstructed by numerical modeling using a
complex Ginzburg–Landau model, which explicitly takes into account the carrier density dynamics in the semiconductor.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0010633., s

I. INTRODUCTION

The past decades of research in nonlinear optics have uncov-
ered an immense variety of systems and material configurations that
can support optical solitons.1 In conservative optical systems, tem-
poral or spatial solitons are supported by a nonlinearity compensat-
ing for the dispersion or diffraction of light in the propagating geom-
etry.2–4 The real-world photonic devices suffer from intrinsic losses,
and it is essential to achieve the balance not only between the disper-
sion or diffraction and the nonlinearity but also in the energy flow,
i.e., between the gain and loss in the system, to support self-localized
structures.5 Spatially localized dissipative structures, called cavity
solitons,6 have been successfully created in broad area vertical cavity
surface emitting lasers (VCSELs).7 In this configuration, the device
is kept below the lasing threshold, while the use of an additional

external coherent holding laser beam is set up to achieve an
optical bistability condition leading to the creation of stable local-
ized modes. Their control is implemented with an additional writing
laser beam or a pulse.8,9 The spatially localized cavity solitons are
not created in a propagating geometry in the device, but are con-
fined within the optical microcavity mirrors and can be moved in
the transverse direction (perpendicular to the cavity). In the scheme
most suitable for applications, the broad-area microcavity is driven
above the threshold and is coupled to an external cavity mirror or to
a saturable absorber, which allows for the creation of a stable cavity
soliton laser.10–12

When a laser is driven above the threshold, the spatially uni-
form gain without an additional coherent holding beam (or other
source of bistability) is not capable of sustaining a strongly local-
ized bright mode that becomes unstable due to the action of the
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gain outside of its core.13 Therefore, a different approach has to be
implemented to overcome the competition between the coherent
holding beam and the gain of the lasing field. One can imagine
modifying the spatial gain profile in the device to tackle this issue.
A straightforward way would be to contain gain in a small spatial
volume, while the loss outside of this “hot-spot” provides a balance
between gain and loss around the bright soliton core.14

Dissipative modes pinned by a localized gain have been inten-
sively studied theoretically, and their realizations in various sys-
tems were proposed.15 These localized structures, known as gain-
pinned dissipative solitons, have been predicted to be robust and
stable over a wide range of parameters even in the absence of
Kerr nonlinearity in the material. In particular, a one-dimensional
complex Ginzburg–Landau model with an infinitesimally localized
gain in a dissipative medium supports an exact dissipative soliton
solution,15,16

E(x) = Asinh(κ(∣x∣ + ξ))(−1+iμ), (1)
where A is the amplitude of the mode, μ is the chirp coefficient,
and κ, ξ determine the shape of the field envelope function. It is
not a generic solution, as the analytical form is only available under
a constraint on the parameters. Nevertheless, it has been shown
numerically that this type of solution represents a broader family of
stable localized modes.16 The gain-pinned dissipative soliton solu-
tion, Eq. (1), is an attractor15,16 of the complex Ginzburg–Landau
model and is independent of initial conditions (see the supplemen-
tary material for numerical examples). Moreover, the gain-pinned
dissipative solitons are expected to be stabilized in systems with non-
negligible nonlinear losses15,16 or in the absence of nonlinear losses
in a system with cubic gain.17

The shapes of gain-pinned dissipative solitons are shown in
Fig. 1(a). In the simplest case of linear losses in the cavity, with-
out Kerr nonlinearity, the mode profile is trivial and is character-
ized by an exponential decay outside of the gain spot [black lines
in Fig. 1(a)].14,15 However, the shape is considerably changed when
nonlinear losses are present in the system (two-photon absorption),
localizing the mode around the “hot-spot” [green lines in Fig. 1(a)].

The spatial profile of a dissipative soliton [Eq. (1)] is dic-
tated by the balance between gain and loss.1,15 The mode profile
can be written in a generalized form as E(x) = A(x)eiϕ(x) with the
local amplitude A(x) and the phase ϕ(x). The local energy flux
j(x) = A2

(x) dϕ(x)dx and its derivative g(x) = dj(x)
dx can be used to

quantify the local gain g(x) > 0 and loss g(x) < 0. The numerically cal-
culated gain-pinned dissipative soliton profile |E(x)|2 and j(x), g(x)
(taking a finite gain spot) are shown in Fig. 1(b). The gain-pinned

dissipative soliton is associated with the characteristic spatial pro-
files of these quantities. Specifically, the energy flux j(x) is zero at the
soliton center, negative on the left, and positive on the right, reflect-
ing the energy outflow from the center to the tails of the mode. The
local energy gain g(x) is positive in the center, where the gain spot is
located, and negative outside, indicating energy loss. The gain–loss
balance criterion can be expressed as ∫+∞−∞ g(x)dx = 0 and is fulfilled
for the gain-pinned dissipative soliton.1,14–16

In this work, following the existing theoretical proposals, we
present the proof-of-concept experimental realization of spatially
localized structures, which are interpreted as gain-pinned spatial
dissipative solitons, in the quasi-one-dimensional semiconductor
microcavity schematically shown in Fig. 2(a). We shape the gain spot
by shining a focused, pulsed laser beam tuned above the bandgap
of the cavity material (GaAs) to generate a dissipative soliton that
is strongly localized in space and decays in time. The observed
lasing mode is confined around the area of the resolution-limited
gain. The ultrafast dynamics of the soliton formation and decay,
the evolution of the spatial profile, and the far-field (the in-plane
momentum spectrum) emission are probed directly by streak cam-
era measurements. The gain-pinned solitons form on a timescale
of a few picoseconds, which is orders of magnitude faster than the
previously reported cavity soliton manipulation dynamics8,9,12,18 and
is comparable to optically injected bright exciton–polariton soliton
timescales.19 We successfully reconstruct all the observed dynamical
features by employing a complex Ginzburg–Landau model.

II. SAMPLE AND EXPERIMENTAL SETUP
Starting from a planar GaAs VCSEL sample, the quasi-

one-dimensional cavity structures are processed via electron
beam lithography and etched using electron cyclotron-resonance
reactive-ion-etching in the form of stripes of hundreds of microme-
ters in length and only a few micrometers in width, creating an effec-
tively one-dimensional transverse confinement of optical modes.
The planar sample is an AlAs/GaAs λ/2-long planar microcavity
composed of two distributed Bragg reflectors (DBRs) enclosing two
stacks of four In0.3Ga0.7As/GaAs quantum wells (QWs) located at
the antinodes of the photon field. The ground state of the quan-
tum well is located around 1.262 eV at cryogenic temperatures.
The measured microcavity Q-factor was about 1000 before etch-
ing. The sample is characterized with a substantial disorder poten-
tial,20 pronounced after etching (see the supplementary material,
Sec. II B). The possible origin of disorder is the strong fluctua-
tions and strain induced by the high indium content QWs grown

FIG. 1. (a) Gain-pinned dissipative soli-
ton shapes calculated numerically with a
constant (CW) linear pump of finite width
under the assumption of linear (black
lines) and nonlinear losses (green lines)
in the system, and the analytical expres-
sion from Eq. (1) is plotted with a dashed
line. (b) Dissipative soliton profile |E(x)|2

plotted with the local energy flux j(x) and
the local energy generation g(x) charac-
terizing the gain–loss distribution of the
mode.
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near the critical thickness.21 This contributes to the inhomogeneous
broadening of the laser emission below the threshold [Fig. 2(c)].
Additional linewidth broadening of the emission from quasi-one-
dimensional stripes is induced by the imperfections of the sidewalls
of the fabricated structures.

The localized gain is provided by a pulsed laser source
(Ti:sapphire, 140 fs pulses with a 76 MHz repetition rate), frequency-
tuned above the GaAs bandgap and to one of the reflectivity minima
of the cavity for the efficient photo-excitation of electron–hole pairs.
The laser spot is focused via an objective (NA = 0.42) on the surface
of the cavity laser stripe to a Gaussian spot of 1.5 μm full width at half
maximum (FWHM) (see the supplementary material, Sec. II G). In
contrast to typical GaAs-based waveguide designs for optical soli-
ton experiments, where the detrimental effects of nonlinear losses
are kept to a minimum,3,4 our sample design places the fundamen-
tal cavity mode in the spectral range where the nonlinear refractive
index is small and defocusing and, most importantly, where signifi-
cant nonlinear losses due to the two-photon absorption are expected
to occur22 (see parameter calculation in the supplementary material,
Sec. II E). These material characteristics provide the conditions for
the generation of gain-pinned dissipative solitons, as indicated by

theoretical models.15 Additionally, the nonlinear loss channel is
known to be more pronounced in photonic devices due to a small
volume of the confined photon mode,23–26 effectively lowering the
total power densities at which the nonlinear effects occur. This prop-
erty makes our system most suitable for exploiting the nonlinear loss
in the process of dissipative soliton formation.

In the experiment, the sample is kept in a continuous flow liq-
uid helium cryostat at a temperature T = 5 K. The emission from
the sample is collected via the microscope objective in the reflec-
tion setup configuration and then further transferred through a set
of achromatic lenses to a spectrometer for a near-field (real space)
and far-field (momentum space) imaging. The monochromator
(0.5 m focal length, Princeton Instruments) outputs are coupled to a
two-dimensional InGaAs near-infrared camera (NIRvana Princeton
Instruments) and to a Hamamatsu streak camera (temporal reso-
lution of about 3 ps). For imaging purposes, the monochromator
grating is set to the zeroth-order mode.

III. RESULTS
The power dependent measurements of the output intensity

of the device luminescence reveal a typical lasing threshold (where

FIG. 2. (a) Schematics of the exper-
imental realization. The dimensions of
the microlaser stripe are indicated in
this figure. (b) Power dependent input–
output series of an investigated micro-
cavity laser showing a typical threshold
behavior. [(c) and (d)] Far-field spectra
of the lasing mode (c) below and (d) at
the lasing threshold. k∥ is the in-plane
wavevector along the stripe. The dashed
line indicates the cavity photon momen-
tum dispersion. Real-space images of
the spatial shape of the dissipative soli-
ton for P = 3.3Pth in linear (e) and in
logarithmic (f) color scales. The red circle
indicates the gain spot.
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the lasing threshold value Pth = 29 pJ/μm2), see Fig. 2(b), being
accompanied by the emission linewidth narrowing and the distinct
blueshift of the emission energy (by about 3 meV), as seen in the
far-field spectra in Figs. 2(c) and 2(d). This energy shift originates
from the local cavity refractive index change due to the free carriers
generated in the GaAs spacer of the cavity volume by a nonreso-
nant pump pulse.25,27 Subsequently, carriers relax to the quantum
wells, creating an electron–hole plasma, and provide gain for the las-
ing and the localized mode pinning. The broad momentum range
of the far-field spectrum in Fig. 2(d) reflects the strong localization
observed in the real space, as shown in Figs. 2(e) and 2(f). The spatial
extent of the localized structure is constrained to the diffraction-
limited gain spot (∼1.5 μm) in the direction along the long axis
of the stripe, and the sample dimensions in the direction of the
short axis (mode width is about 4 μm in the perpendicular direc-
tion). The mode volume can possibly be confined to an even smaller
area by employing narrower microwire cavities or photonic crystal
nanocavities.24

The pulsed excitation used in the experiment results in a non-
stationary, decaying gain and lasing of the localized structure owing
to the finite lifetime of the excited carriers and cavity photons in the
system. Hence, we perform an analysis of the shape and intensity
of the gain-pinned localized structure in the direct time-resolved

experiment. The dynamics of the near and far-field emission pat-
terns along the microcavity stripe excited above the lasing threshold
are shown in Figs. 3(a)–3(c) with the analysis of the spatial width and
the signal intensity shown in Fig. 3(d). Importantly, this dynamics
occurs on the timescale of ∼102 ps, which is three orders of magnitude
longer than the timescale of the pulsed excitation (∼102 fs). One dis-
tinguishes three stages in the dynamics. First, the pump pulse creates
high-energy electrons and holes in the barrier, which relax and form
a gain medium within the quantum well states [stage I in Fig. 3(d)].
Then, after about 10 ps, the localized lasing occurs with the rapid
narrowing of the spatial width down to the optical resolution limit
of the setup (of ∼1.5 μm) in stage II. Subsequently, the emission pulse
maintains its narrow width with the strongest emission of photons,
and eventually, it decays and spreads at later times (after t > 60 ps),
which is evidenced in the increase of the spatial width, stage III in
Fig. 3(d). This latter stage is the linear regime, where the gain decays
and the nonlinearity is too weak to sustain the localized shape. The
onset of the nonlinearly localized structure is characterized by an
ultra-short time of ∼3 ps, being limited by the temporal resolution
of the setup. The observed fast response is a result of the onset
of the stimulated emission and the ultrafast dynamics of electronic
semiconductor nonlinearities occurring on the timescales of a few
picoseconds.25,28–30

FIG. 3. [(a) and (b)] Measured time-resolved spatial dynamics of the spatial emission in (a) linear and (b) logarithmic color scales, respectively, at pumping power P = 3.3Pth.
(c) Far-field dynamics, where two distinct wavevectors are visible and indicated with white dotted lines. (d) Time dependency of the signal intensity and its spatial width
[full width at half maximum (FWHM)] following the 140 fs excitation pulse. Three different stages in the time dynamics are indicated in this figure. The region with a low
signal-to-noise ratio of the spatial width data is depicted with a dotted line. [(e) and (f)] Spatial distributions of the emission at different times are indicated in these figures.
The dashed curve is the gain-pinned dissipative soliton envelope curve [Eq. (1)] fitted to the experimental data |E(x)|2. The gray dotted line indicates the Gaussian gain spot.
(g) Spatial localization dynamics under different pumping powers showing the decrease in the spatial width with increasing number of photons and gain in the system. (h)
Minimal spatial width of the structure, showing typical density-dependent narrowing of the structure width. Dashed lines in (g) and (h) indicate the spatial resolution of the
setup.
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The three characteristic regimes in the dynamics are also
reflected in the spatial shape of the emission, as shown in Figs. 3(e)
and 3(f). At the onset of lasing, when the emission intensity is low,
the lasing mode is weakly localized around the gain spot with a char-
acteristic spatial exponential decay. Subsequently, the lasing inten-
sity rises, reaching a maximum at around t = 37 ps, whereby the non-
linear localization and formation of a strongly localized mode occur.
The spatial profile of the localized structure, see Fig. 3(f), reveals the
gain-pinned soliton solution shown in Fig. 1 and follows the analyti-
cal expression of Eq. (1). The strong spatial focusing is caused by the
presence of nonlinear losses in the system since any other nonlin-
earities (e.g., due to the Kerr effects and excitonic nonlinearity; see
the supplementary material, Sec. II E) are defocusing and would lead
to a trivial broadened shape, similar to the one in the linear regime
in Fig. 1(a). The observed self-focusing is a proof that the device
operates in the weak coupling regime because the exciton–polariton
interactions in the strong coupling regime would result in a strongly
defocusing nonlinearity. Additionally, one can safely rule out the
thermal effects, which have much longer timescales (microsec-
onds) and manifest themselves in a redshift of the cavity mode
energy.31

The far-field spectrum contains two distinct peaks [Fig. 3(c)]
due to the outward propagation of photons from the gain spot.
This shape is the consequence of a dynamical balance of the energy
flow characteristic of dissipative solitons, as discussed in the Intro-
duction;1,14,15 see Fig. 1(b). Additionally, backscattering of these
propagating waves on the intrinsic disorder of the sample causes
the characteristic interference pattern observed on top of the local-
ized structure. This effect is seen both in time integrated, Fig. 2(f),
and time-resolved images, Fig. 3(b). The disorder scattering in the
sample adds a small spatial modulation to the shape described by
Eq. (1), the latter being independent of the particular position on
the sample (see the supplementary material for data taken at a dif-
ferent laser cavity stripe). At longer times after the excitation pulse,
the nonlinear localization weakens and the mode once again dis-
plays exponentially decaying tails with additional disorder-induced
modulation. The nonlinear localization mechanism of the dissipa-
tive structure is confirmed in the density-dependent measurements,
where one observes sharp narrowing of the spatial width above the
lasing threshold, as shown in Figs. 2(g) and 2(h). The minimum
measured spatial width is due to the setup resolution, being also
the limitation for the gain spot diameter, and is indicated by a hor-
izontal dashed line in Figs. 2(g) and 2(h). We note that no local-
ization is observed when the microcavity is pumped with a large
quasi-homogeneous pump spot of about 40 μm, which rules out
the localization caused by the spatial hole burning effect or trivial
localization by the local disorder (see the supplementary material,
Sec. II C).

IV. NUMERICAL SIMULATIONS
To verify the interpretation of the experiment proposed above,

we perform numerical simulations based on a complex Ginzburg–
Landau equation including nonresonant pumping and dissipation in
the system, taking into account the nonlinear losses and simplified
dynamics of the photo-excited reservoir of carriers. The electric field
envelope E(x, t) is coupled to a rate equation for the density of the
carrier reservoir N(x, t), i.e., the gain medium,

∂

∂t
E(x, t) =

ic2

2kcn2
c

∂2

∂x2 E(x, t)

+
1
2
(ΓN(x, t) − γc − β∣E(x, t)∣2)E(x, t)

− iV(x)E(x, t) − iαN(x, t)E(x, t), (2)

∂

∂t
N(x, t) = P(x, t) − γN(x, t) − Γ∣E(x, t)∣2N(x, t). (3)

Here, the cavity photons are described by an effective mass
along the microcavity stripe m = Ecn2

c/c2, where Ec = ̵hkcc is the cav-
ity photon energy at k∥ = 0, nc is the cavity refractive index, c is the
speed of light, and kc is the confined longitudinal mode wavenum-
ber. The gain in the system is described by the coefficient Γ, and the
linear loss (cavity photon lifetime) is denoted by γc. The nonlinear
losses (e.g., two-photon absorption) in the system are denoted by
β. The carrier reservoir decay rate is determined by γ. The nonres-
onant pumping of the system is described by the rate of injection
of the carrier density P(x, t). This term can be constant for contin-
uous wave (CW) simulations or can be expressed as P(x)δ(t = 0)
for the ultrafast pulsed excitation corresponding to the experimental
conditions, setting the initial spatial density distribution of carri-
ers in the microcavity. Local modifications of the cavity refractive
index are introduced through the carrier density and scaled with the
linewidth enhancement factor parameter α. The material disorder is
described as a static potential V(x) (see the supplementary material,
Sec. II B). In the case of CW excitation (e.g., Fig. 1), the model can
be reduced to a single equation under the assumption of the carrier
density N(x, t) adiabatically following the field evolution |E(x, t)|2.
In this case, Eq. (3) can be solved for a CW pump P(x, t) = P(x) (see
the supplementary material, Sec. I A)

N(x, t) =
P(x)

γ + Γ∣E(x, t)∣2
. (4)

As shown in Fig. 4, our numerical simulations successfully
reconstruct all the characteristic features seen in the experiment,
namely, the shape of the localized structure and its dynamics in the
real space as well as the far-field spectra. As shown in Fig. 4(a),
the dissipative structure is localized around the gain spot in real
space, and its Fourier spectrum contains two main wavevector com-
ponents, as shown in Fig. 4(c). Power-dependent simulations yield
the narrowing of the spatial width, see Fig. 4(f), which is the man-
ifestation of the nonlinear trapping mechanism seen in the exper-
iment, as shown in Fig. 3(h). Inclusion of nonlinear losses in the
model is essential for reproducing the experimental shape of the
soliton, as the model with only linear losses captures neither the
dynamics shown in Fig. 3 nor the spatial width narrowing (addi-
tional numerical results are presented in the supplementary mate-
rial, Sec. I). Our model also includes a random disorder potential
(caused by variations of the refractive index or imperfections of
the thickness of the fabricated microwire) with similar character-
istics to the one measured experimentally, which slightly modu-
lates the shape. The shape of the dissipative localized structure is
found to be robust to the change of the particular realizations of
the disorder, which are kept within the experimentally measured
values.
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FIG. 4. [(a) and (b)] Simulated dynamics of the localized structure emission in (a) linear and (b) logarithmic color scales. (c) Far-field dynamics. [(d) and (e)] Spatial distributions
at two different times: presenting the localized structure at 35 ps and the diffracted distribution at a later time 90 ps, with the intensity plotted on the (d) linear and (e) logarithmic
scale. Analytical fit of the gain-pinned dissipative soliton profile, Eq. (1), at 35 ps is drawn with a dashed line. (f) Narrowing of the spatial width with pump amplitude limited
by the width of the simulated gain spot. Simulation parameters are γc = 1 ps−1, γ = 1 ns−1, m∗ = 3.12 ⋅ 10−5 m0, where m0 is the free electron mass, Γ = 0.01 μm/ps, β = 1
μm/ps, and α = 4.6 ⋅ 10−3 μm/ps.

V. CONCLUSIONS

We have demonstrated experimentally one-dimensional local-
ized dissipative structures, which have the predicted properties of
gain-pinned dissipative solitons. We demonstrate these structures
in a GaAs-based VCSEL for which (i) the experimental realization
is particularly convenient due to nonresonant pumping, above the
active material bandgap; (ii) the structure size is limited by the gain
profile and is, therefore, much smaller than the typical VCSEL soli-
tons7,8,10,12 and comparable to the size of exciton–polariton bright
solitons;19,32 and (iii) the onset dynamics, being driven by stimulated
laser emission, is an ultra-fast process in the range of single picosec-
onds, orders of magnitude faster than cavity solitons9,18 and of the
same order of magnitude as bright exciton–polariton solitons.19,33

The temporal decay of the lasing signal observed in our experiment
is due to the pulsed regime of excitation, whereby the gain-pinned
dissipative soliton is created in a dynamical “single-shot” regime.
However, the strongly localized dissipative structures persist on the
timescales exceeding the timescale of the pulsed excitation by sev-
eral orders of magnitude. This long timescale is determined by the
lifetime of the gain medium injected by the pulse in the experiment.

Continuous wave (CW) pumping would be capable of maintaining
steady-state soliton lasing with a constant gain. This offers a possi-
bility to create stable, steady-state gain-pinned dissipative solitons
localized in a semiconductor device.

Although our study explores a quasi-one-dimensional version
of a VCSEL, our results pave the way toward creating stable two-
dimensional solitary modes, which, as predicted theoretically,34 are
within reach in modern semiconductor microcavities of a similar
design. Manipulation of the soliton position and its transversal prop-
agation can be performed by the spatial modulation of the excitation
beam, using spatial light modulators (SLMs), offering exciting pos-
sibilities for the creation of two-dimensional vortex solitons34–37 or
multi-soliton structures.38,39 Furthermore, gain-pinned dissipative
solitons presented here, due to their robustness and simple realiza-
tion, could be arranged into lattices. Their self-localization enables
the realization of a dense array of solitons (small lattice constant
arrangement) preventing the development of a broad lasing area
far above the threshold. Therefore, gain-pinned solitons represent a
perfect platform for simulations of classical Hamiltonians,40,41 stud-
ies of complex topological ordering,42,43 and spontaneous symmetry
breaking in laser systems.38,44,45
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SUPPLEMENTARY MATERIAL

See the supplementary material for additional experimental and
numerical data supporting this work.
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