437 research outputs found
Study of semi-synthetic plastic objects of historic interest using non-invasive total reflectance FT-IR
A significant proportion of modern and contemporary artifacts and objects of historical interest, are composed of materials in the form of synthetic, semi-synthetic, and natural polymers. Each class of polymer and corresponding composite plastics are subject to different degradation processes. This means that conservators and curators of 20th century collections are faced with varied, nontrivial preservation issues. An unresolved problem is the identification of early plastics based on semi-synthetic polymers such as cellulose nitrate, cellulose acetate, and casein formaldehyde, which were often used to imitate the more valuable natural materials such as ivory, tortoiseshell, ebony, and bone. This exemplifies the need for non-invasive methods specifically tailored for identification of plastic materials in collections, so as to provide conservators with a means of materials classification to support preventive conservation strategies and interventive treatments. The present work is aimed at evaluating the effectiveness of non-invasive Total Reflectance (TR) FT-IR spectroscopy, coupled with a custom reference spectral TR FT-IR library, for the identification of materials comprising a series of unknown objects. A set of ten heritage objects made from early semi-synthetic materials was used as a training test set to validate the proposed methodological approach. The FT-IR data acquired on the test objects were pre-processed and finally classified using commercial software tools used for the automatic classification of spectra in FT-IR spectroscopy. The procedure was successfully applied to several cases, although residual uncertainties remained in a few examples. The results obtained are critically analyzed and discussed in the perspective of proposing a robust method for in-field prescreening of the chemical composition of plastic artistic and historical objects
Direct experimental observation of nonclassicality in ensembles of single photon emitters
In this work we experimentally demonstrate for the first time a recently
proposed criterion adressed to detect nonclassical behavior in the fluorescence
emission of ensembles of single-photon emitters. In particular, we apply the
method to study clusters of NV centres in diamond observed via
single-photon-sensitive confocal microscopy. Theoretical considerations on the
behavior of the parameter at any arbitrary order in presence of poissonian
noise are presented and, finally, the opportunity of detecting manifold
coincidences is discussed
Nanodiamonds-induced effects on neuronal firing of mouse hippocampal microcircuits
Fluorescent nanodiamonds (FND) are carbon-based nanomaterials that can
efficiently incorporate optically active photoluminescent centers such as the
nitrogen-vacancy complex, thus making them promising candidates as optical
biolabels and drug-delivery agents. FNDs exhibit bright fluorescence without
photobleaching combined with high uptake rate and low cytotoxicity. Focusing on
FNDs interference with neuronal function, here we examined their effect on
cultured hippocampal neurons, monitoring the whole network development as well
as the electrophysiological properties of single neurons. We observed that FNDs
drastically decreased the frequency of inhibitory (from 1.81 Hz to 0.86 Hz) and
excitatory (from 1.61 Hz to 0.68 Hz) miniature postsynaptic currents, and
consistently reduced action potential (AP) firing frequency (by 36%), as
measured by microelectrode arrays. On the contrary, bursts synchronization was
preserved, as well as the amplitude of spontaneous inhibitory and excitatory
events. Current-clamp recordings revealed that the ratio of neurons responding
with AP trains of high-frequency (fast-spiking) versus neurons responding with
trains of low-frequency (slow-spiking) was unaltered, suggesting that FNDs
exerted a comparable action on neuronal subpopulations. At the single cell
level, rapid onset of the somatic AP ("kink") was drastically reduced in
FND-treated neurons, suggesting a reduced contribution of axonal and dendritic
components while preserving neuronal excitability.Comment: 34 pages, 9 figure
All-carbon multi-electrode array for real-time in vitro measurements of oxidizable neurotransmitters
We report on the ion beam fabrication of all-carbon multi electrode arrays
(MEAs) based on 16 graphitic micro-channels embedded in single-crystal diamond
(SCD) substrates. The fabricated SCD-MEAs are systematically employed for the
in vitro simultaneous amperometric detection of the secretory activity from
populations of chromaffin cells, demonstrating a new sensing approach with
respect to standard techniques. The biochemical stability and biocompatibility
of the SCD-based device combined with the parallel recording of
multi-electrodes array allow: i) a significant time saving in data collection
during drug screening and/or pharmacological tests over a large number of
cells, ii) the possibility of comparing altered cell functionality among cell
populations, and iii) the repeatition of acquisition runs over many cycles with
a fully non-toxic and chemically robust bio-sensitive substrate.Comment: 24 pages, 5 figure
Photo-physical properties of He-related color centers in diamond
Diamond is a promising platform for the development of technological
applications in quantum optics and photonics. The quest for color centers with
optimal photo-physical properties has led in recent years to the search for
novel impurity-related defects in this material. Here, we report on a
systematic investigation of the photo-physical properties of two He-related
(HR) emission lines at 535 nm and 560 nm created in three different diamond
substrates upon implantation with 1.3 MeV He+ ions and subsequent annealing.
The spectral features of the HR centers were studied in an "optical grade"
diamond substrate as a function of several physical parameters, namely the
measurement temperature, the excitation wavelength and the intensity of
external electric fields. The emission lifetimes of the 535 nm and 560 nm lines
were also measured by means of time-gated photoluminescence measurements,
yielding characteristic decay times of (29 +- 5) ns and (106 +- 10) ns,
respectively. The Stark shifting of the HR centers under the application of an
external electrical field was observed in a CVD diamond film equipped with
buried graphitic electrodes, suggesting a lack of inversion symmetry in the
defects' structure. Furthermore, the photoluminescence mapping under 405 nm
excitation of a "detector grade" diamond sample implanted at a 1x1010 cm-2 He+
ion fluence enabled to identify the spectral features of both the HR emission
lines from the same localized optical spots. The reported results provide a
first insight towards the understanding of the structure of He-related defects
in diamond and their possible utilization in practical applicationsComment: 9 pages, 3 figure
Let's Twist Again: N=2 Super Yang Mills Theory Coupled To Matter
We give the twisted version of N=2 Super Yang Mills theory coupled to matter,
including quantum fields, supersymmetry transformations, action and algebraic
structure. We show that the whole action, coupled to matter, can be written as
the variation of a nilpotent operator, modulo field equations. An extended
Slavnov-Taylor identity, collecting gauge symmetry and supersymmetry, is
written, which allows to define the web of algebraic constraints, in view of
the algebraic renormalization and of the extension of the non-renormalization
theorems holding for N=2 SYM theory without matter.Comment: 28 pages, final version to be published on CQ
Lateral IBIC characterization of single crystal synthetic diamond detectors
In order to evaluate the charge collection efficiency (CCE) profile of single-crystal diamond devices based on a p-type/intrinsic/metal configuration, a lateral Ion Beam Induced Charge (IBIC) analysis was performed over their cleaved cross sections using a 2 MeV proton microbeam. CCE profiles in the depth direction were extracted from the cross-sectional maps at variable bias voltage. IBIC spectra relevant to the depletion region extending beneath the frontal Schottky electrode show a 100% CCE, with a spectral resolution of about 1.5%. The dependence of the width of the high efficiency region from applied bias voltage allows the constant residual doping concentration of the active region to be evaluated. The region where the electric field is absent shows an exponentially decreasing CCE profile, from which it is possible to estimate the diffusion length of the minority carriers by means of a drift-diffusion model. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
A 3-dimensional interdigitated electrode geometry for the enhancement of charge collection efficiency in diamond detectors
In this work, a single crystal CVD diamond film with a novel three-dimensional (3D) interdigitated electrode geometry has been fabricated with the reactive ion etching (RIE) technique in order to increase the charge collection efficiency (CCE) with respect to that obtained by standard superficial electrodes. The geometrical arrangement of the electric field lines due to the 3D patterning of the electrodes results in a shorter travel path for the excess charge carriers, thus contributing to a more efficient charge collection mechanism. The CCE of the device was mapped by means of the ion beam induced charge (IBIC) technique. A 1MeV proton microbeam was raster-scanned over the active area of the diamond detector under different bias voltage conditions, enabling to probe the charge transport properties of the detector up to a depth of 8 ìm below the sample surface. The experimental results, supported by the numerical simulations, show a significant improvement in the 3D detector performance (i.e. CCE, energy resolution, extension of the active area) if compared with the results obtained by standard surface metallic electrodes
Hyperspectral imaging and convolutional neural networks for augmented documentation of ancient Egyptian artefacts
- …
