21 research outputs found

    Quantum networking with optimised parametric down-conversion sources

    Get PDF
    Quantum information processing exploits superposition and entanglement to enable tasks in computation, communication and sensing that are classically inconceivable. Photonics is a leading platform for quantum information processing owing to the relative ease in which the encoding and manipulation of quantum information can be achieved, but there are a set of characteristics that photons themselves must exhibit in order to be useful. The ideal photon source for building up multi-qubit states needs to produce indistinguishable photons with high efficiency. Indistinguishability is crucial for minimising errors in two-photon interference, central to building larger states, while high heralding rates will be needed to overcome unfavourable loss scaling. Domain engineering in parametric down-conversion sources negates the need for lossy spectral filtering allowing one to satisfy these conditions inherently within the source design. Contained in this Thesis are two experimental investigations. Within the first investigation, we present a telecom-wavelength parametric down-conversion photon source that operates on the achievable limit of domain engineering. The source is capable of generating photons from independent sources which achieve two-photon interference visibilities of up to 98.6 ± 1.1% without narrow-band filtering. As a consequence, we can reach net heralding efficiencies of 67.5%, corresponding to collection efficiencies exceeding 90%. These sources enable us to efficiently generate multi-photon graph states, constituting the second experimental investigation. Graph states, and their underlying formalism, have been shown to be a valuable resource in quantum information processing. The generation and distribution of a 6-photon graph state—defining the topology of a quantum network—allows us to explore prospective issues with networks that invoke protocols beyond end-to-end primitives, where users only require local operations and projective measurements. In the case where multiple users wish to establish a common key for conference communication, our proof-of-principle experiment concludes that employing N-user key distribution methods over 2-user methods, results in a 2.13 ± 0.06 key rate advantage

    Direct Generation of Tailored Pulse-Mode Entanglement

    Get PDF
    Photonic quantum technology increasingly uses frequency encoding to enable higher quantum information density and noise resilience. Pulsed time-frequency modes (TFM) represent a unique class of spectrally encoded quantum states of light that enable a complete framework for quantum information processing. Here, we demonstrate a technique for direct generation of entangled TFM-encoded states in single-pass, tailored downconversion processes. We achieve unprecedented quality in state generation---high rates, heralding efficiency and state fidelity---as characterised via highly resolved time-of-flight fibre spectroscopy and two-photon interference. We employ this technique in a four-photon entanglement swapping scheme as a primitive for TFM-encoded quantum protocols.Comment: 5 pages, 4 figures, 3 pages supplemental materia

    Enhanced Multi-Qubit Phase Estimation in Noisy Environments by Local Encoding

    Full text link
    The first generation of multi-qubit quantum technologies will consist of noisy, intermediate-scale devices for which active error correction remains out of reach. To exploit such devices, it is thus imperative to use passive error protection that meets a careful trade-off between noise protection and resource overhead. Here, we experimentally demonstrate that single-qubit encoding can significantly enhance the robustness of entanglement and coherence of four-qubit graph states against local noise with a preferred direction. In particular, we explicitly show that local encoding provides a significant practical advantage for phase estimation in noisy environments. This demonstrates the efficacy of local unitary encoding under realistic conditions, with potential applications in multi-qubit quantum technologies for metrology, multi-partite secrecy and error correction.Comment: 7 figure

    Hyper-entanglement between pulse modes and frequency bins

    Full text link
    Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols by allowing each DOF to perform the task it is optimally suited for. Here we demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins. The pulse modes are generated via parametric downconversion in a domain-engineered crystal and subsequently entangled to two frequency bins via a spectral mapping technique. The resulting hyper-entangled state is characterized and verified via measurement of its joint spectral intensity and non-classical two-photon interference patterns from which we infer its spectral phase. The protocol combines the robustness to loss, intrinsic high dimensionality and compatibility with standard fiber-optic networks of the energy-time DOF with the ability of hyper-entanglement to increase the capacity and efficiency of the quantum channel, already exploited in recent experimental applications in both quantum information and quantum computation

    Experimental test of local observer-independence

    Get PDF
    The scientific method relies on facts, established through repeated measurements and agreed upon universally, independently of who observed them. In quantum mechanics, the objectivity of observations is not so clear, most dramatically exposed in Eugene Wigner's eponymous thought experiment where two observers can experience seemingly different realities. The question whether these realities can be reconciled in an observer-independent way has long remained inaccessible to empirical investigation, until recent no-go-theorems constructed an extended Wigner's friend scenario with four observers that allows us to put it to the test. In a state-of-the-art 6-photon experiment, we realise this extended Wigner's friend scenario, experimentally violating the associated Bell-type inequality by 5 standard deviations. If one holds fast to the assumptions of locality and free-choice, this result implies that quantum theory should be interpreted in an observer-dependent way.Comment: 5+5 pages, 6 figure

    Entanglement-induced collective many-body interference

    Full text link
    Entanglement and interference are both hallmark effects of quantum physics. Particularly rich dynamics arise when multiple (at least partially) indistinguishable particles are subjected to either of these phenomena. By combining both entanglement and many-particle interference, we propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed. We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle, as only pairs of photons interfere at two separate and independent beam splitters. A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property

    Quantum communication complexity beyond Bell nonlocality

    Full text link
    Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks such as parallel computation and circuit optimisation. Crucially, the communication overhead introduced by the allotment process should be minimised -- a key motivation behind the communication complexity problem (CCP). Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts. Furthermore, the connection between quantum CCPs and nonlocality provides an information-theoretic insights into fundamental quantum mechanics. Here we connect quantum CCPs with a generalised nonlocality framework -- beyond the paradigmatic Bell's theorem -- by incorporating the underlying causal structure, which governs the distributed task, into a so-called nonlocal hidden variable model. We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities, whose violation is both necessary and sufficient for a quantum gain. We experimentally implement a multipartite CCP akin to the guess-your-neighbour-input scenario, and demonstrate a quantum advantage when multipartite Greenberger-Horne-Zeilinger (GHZ) states are shared among three users.Comment: 21 pages, 5 figure
    corecore