388 research outputs found

    Structure–property relationship of recycled carbon fibres revealed by pyrolysis recycling process

    Get PDF
    The structure-property relationship for recycled carbon fibres is investigated by characterisation of the structure changes induced by the pyrolysis recycling process. Two important factors influencing the properties of recycled carbon fibres are identified for various recycling processes: oxidative effect and thermal effect. The oxidative effect results in surface defects, and the surface defects causes a reduction in tensile strength and lateral crystallite size. The thermal effect of the recycling process results in an expansion in the distance between graphite layers and a decrease in surface oxygen concentration, which would lead to a drop in interfacial shear strength with epoxy resins. The tensile strength of recycled carbon fibres has a strong correlation with the intensity ratio of the D and G bands of the Raman spectra (ID/IG). With an increase in ID/IG, the tensile strength of recycled carbon fibre decreases linearly

    Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry

    Get PDF
    Here, a typical small low-voltage totally enclosed fan-cooled (TEFC) motor (output power ∼10 kW) has been studied using computational fluid dynamics. The complexity of the end-winding geometries, often consisting of several insulated copper strands bound together, provides a challenge to the modelling and analysis of heat transfer and fluid flow phenomena occurring in the end region, which typically is an area of most interest for thermal management. Approximated geometries are usually employed in order to model the end windings to reduce the analysis time and cost. This paper presents a comparison of two cases, a typical simplified geometry and a more realistic geometry of end windings, and uses these cases to highlight the challenges and impact on predicted heat transfer. A comparison of the two models indicate that the different representations of end winding geometries can affect the heat dissipation rate through the outer housing by up to 45%

    Comparative LCA of different graphene production routes

    Get PDF
    This study is an LCA of three graphene production routes: electrochemical exfoliation of graphite rods, chemical oxidation and subsequent chemical or thermal reduction and chemical vapour deposition (CVD). Different processes for each route are analysed and their cradle-to-gate LCA is presented. A comparative LCA of the least impacting processes for each route is also presented showing that the chemical oxidation process followed by thermal reduction is the least impacting to produce large quantities of graphene when lab equipment is used to its full potential.A prospective LCA on a likely commercial scale of the least impacting processes is also presented and shows that almost all processes benefit from a scale-up activity and that the least impacting material route remains the chemical oxidation followed by thermal reduction. An optimistic scenario in which all electricity comes from renewable sources is also presented. While this last scenario promotes the more energy intensive processes, the least impacting technology to produce large quantities of graphene remains the chemical oxidation followed by thermal reduction

    A phase-change model for diffusion-driven mass transfer problems in incompressible two-phase flows

    Get PDF
    We present a VOF-based numerical method for incompressible Direct Navier–Stokes (DNS) equations for diffusion-driven phase-change flows. A special emphasis is placed on the treatment of velocity discontinuities across the interface. A novel algorithm is presented to smoothly extend the liquid velocity field across the interface in a way that the interface can be transported by a divergence-free velocity field. The transport of species is treated with a two-scalar approach and special attention is paid to the advection and diffusion steps in order to prevent artificial mass transfer. The methodology is implemented in the open-source code Basilisk and is validated against analytical and semi-analytical models. The relative errors on the relevant quantities are generally below 1% for the finest grids. The method is finally applied to study the growth of electrochemically generated bubbles on planar electrodes and the effect of contact angles and number of nucleation sites is investigated

    Modelling the enigmatic Late Pliocene Glacial Event: Marine Isotope Stage M2

    Get PDF
    The Pliocene Epoch (5.2 to 2.58Ma) has often been targeted to investigate the nature ofwarmclimates. However, climate records for the Pliocene exhibit significant variability and show intervals that apparently experienced a cooler than modern climate. Marine Isotope Stage (MIS) M2 (~3.3 Ma) is a globally recognisable cooling event that disturbs an otherwise relatively (compared to present-day) warm background climate state. It remains unclear whether this event corresponds to significant ice sheet build-up in the Northern and Southern Hemisphere. Estimates of sea level for this interval vary, and range from modern values to estimates of 65 m sea level fall with respect to present day. Here we implement plausibleM2 ice sheet configurations into a coupled atmosphere–ocean climate model to test the hypothesis that larger-than-modern ice sheet configurations may have existed at M2. Climate model results are compared with proxy climate data available for M2 to assess the plausibility of each ice sheet configuration. Whilst the outcomes of our data/model comparisons are not in all cases straight forward to interpret, there is little indication that results from model simulations in which significant ice masses have been prescribed in the Northern Hemisphere are incompatible with proxy data from the North Atlantic, Northeast Arctic Russia, North Africa and the Southern Ocean. Therefore, our model results do not preclude thepossibilityof the existenceof larger icemasses duringM2 in the Northern or SouthernHemisphere. Specifically they are not able to discount the possibility of significant icemasses in the Northern Hemisphere during the M2 event, consistent with a global sea-level fall of between 40 m and 60 m. This study highlights the general need for more focused and coordinated data generation in the future to improve the coverage and consistency in proxy records for M2, which will allow these and future M2 sensitivity tests to be interrogated further

    Numerical investigations of convective phenomena of oil impingement on end-windings

    Get PDF
    A novel experimental rig for analysing intensive liquid cooling of highly power-dense electrical machine components has been developed. Coupled fluid flow and heat transfer have been modelled, using computational fluid dynamics (CFD), to inform the design of a purpose-built enclosure for optimising the design of submerged oil jet cooling approaches for electrical machine stators. The detailed modelling methodology presented in this work demonstrates the value in utilising CFD as a design tool for oil-cooled electrical machines. The predicted performance of the final test enclosure design is presented, as well as examples of the sensitivity studies which helped to develop the design. The sensitivity of jet flow on resulting heat transfer coefficients has been calculated, while ensuring parasitic pressure losses are minimised. The CFD modelling will be retrospectively validated using experimental measurements from the test enclosure

    Collectivization of Vascular Smooth Muscle Cells via TGF-β-Cadherin-11-Dependent Adhesive Switching.

    Get PDF
    OBJECTIVE: Smooth muscle cells (SMCs) in healthy arteries are arranged as a collective. However, in diseased arteries, SMCs commonly exist as individual cells, unconnected to each other. The purpose of this study was to elucidate the events that enable individualized SMCs to enter into a stable and interacting cell collective. APPROACH AND RESULTS: Human SMCs stimulated to undergo programmed collectivization were tracked by time-lapse microscopy. We uncovered a switch in the behavior of contacting SMCs from semiautonomous motility to cell-cell adherence. Central to the cell-adherent phenotype was the formation of uniquely elongated adherens junctions, ≤60 μm in length, which appeared to strap adjacent SMCs to each other. Remarkably, these junctions contained both N-cadherin and cadherin-11. Ground-state depletion super-resolution microscopy revealed that these hybrid assemblies were comprised of 2 parallel nanotracks of each cadherin, separated by 50 nm. Blocking either N-cadherin or cadherin-11 inhibited collectivization. Cell-cell adhesion and adherens junction elongation were associated with reduced transforming growth factor-β signaling, and exogenous transforming growth factor-β1 suppressed junction elongation via the noncanonical p38 pathway. Imaging of fura-2-loaded SMCs revealed that SMC assemblies displayed coordinated calcium oscillations and cell-cell transmission of calcium waves which, together with increased connexin 43-containing junctions, depended on cadherin-11 and N-cadherin function. CONCLUSIONS: SMCs can self-organize, structurally and functionally, via transforming growth factor-β-p38-dependent adhesive switching and a novel adherens junction architecture comprised of hybrid nanotracks of cadherin-11 and N-cadherin. The findings define a mechanism for the assembly of SMCs into networks, a process that may be relevant to the stability and function of blood vessels

    Control and efficiency analysis for a Lundell-alternator/active-rectifier system in automotive applications

    Get PDF
    This paper presents a control strategy for a conventional Lundell alternator and an active-rectifier. The control scheme focuses on the minimisation of the stator copper losses of the alternator in an effort to maximise its efficiency. The modulation scheme of the active-rectifier is being investigated with the introduction of three different modulation techniques in order to quantify the effect they have on the alternator’s efficiency. Steady-state results from experimental measurements of the alternator rectifier system are compared against a standard passive rectifier. The comparison indicates that the modulation scheme of the active-rectifier is significant to the alternator’s efficiency as well as to the overall system efficiency

    Efficiency improvement and power loss breakdown for a Lundell-alternator/active-rectifier system in automotive applications

    Get PDF
    A control strategy for a conventional Lundell alternator and an active-rectifier using different modulation schemes was proposed in previous work. The modulation techniques examined indicated that the system could operate more efficiently than a passive rectifier over a certain speed and power range. This paper extends the modulation scheme analysis using a SVM scheme with six commutations per switching cycle, giving better electrical and overall efficiency. Furthermore, a power loss breakdown is performed for the active-rectifier with the assistance of experimental and simulation results of double pulse tests. Switching loss estimation curves are produced allowing the loss examination of the active-rectifier. Switching losses account only for a minor portion of the total rectifier losses in comparison to conduction losses. Finally, a higher dc-link voltage of 14.5 V was introduced using SVM scheme, giving better efficiency, in order to exploit further the rectifier loss distribution

    Development of high performance recycled carbon fibre composites with an advanced hydrodynamic fibre alignment process

    Get PDF
    Carbon fibre composites have great potential for vehicle lightweighting but the high cost and environmental impact of their production tends to largely undermine the advantages in non-aerospace applications. Recycled fibre has the potential to significantly reduce both cost and environmental impact but has yet it has not been widely accepted by the composites industry due to reduced mechanical performance in components as well as the difficulties in handling and processing caused by the fluffy discontinuous form which is quite unlike any current material formats which suit existing processing methods. The developed alignment process allows discontinuous random recycled carbon fibre to be processed into tapes with a highly aligned orientation distribution. This allows composites with high fibre content to be manufactured at lower moulding pressures with the added benefit of keeping fibre length degradation to a minimum. To evaluate the effects of process factors on fibre orientation, a two-level full factorial experimental plan was designed. This represents the first time a systematic study of input parameters on final part performance has been published in the open literature. With further improvements to the process, it is shown that it is possible to manufacture a composite achieving high fibre volume content (46%) under 7 bar moulding pressure in an autoclave, exhibiting competitive mechanical properties with almost 100 GPa tensile modulus and over 800 MPa tensile strength
    corecore