451 research outputs found
Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand
Introduction
Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma.
Aims
To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines.
Results
Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both.
Conclusions
1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes
Comparative validation of recent 10 m-resolution global land cover maps
Accurate and high-resolution land cover (LC) information is vital for addressing contemporary environmental challenges. With the advancement of satellite data acquisition, cloud-based processing, and deep learning technology, high-resolution Global Land Cover (GLC) map production has become increasingly feasible. With a growing number of available GLC maps, a comprehensive evaluation and comparison is necessary to assess their accuracy and suitability for diverse uses. This particularly applies to maps lacking statistically robust accuracy assessment or sufficient reported detail on the validation procedures. This study conducts a comparative independent validation of recent 10 m GLC maps, namely ESRI Land Use/Land Cover (LULC), ESA WorldCover, and Google and World Resources Institute (WRI)’s Dynamic World, examining their spatial detail representation and thematic accuracy at global, continental, and national (for 47 larger countries) levels. Since high-resolution map validation is impacted by reference data uncertainty owing to geolocation and labelling errors, five validation approaches dealing with reference data uncertainty were evaluated. Of the considered approaches, validation using the sample label supplemented by majority label within the neighborhood is found to produce more reasonable accuracy estimates compared to the overly optimistic approach of using any label within the neighborhood and the overly pessimistic approach of direct comparison between the map and reference labels. Overall global accuracies of the maps range between 73.4% ± 0.7% (95% confidence interval) to 83.8% ± 0.4% with WorldCover having the highest accuracy followed by Dynamic World and ESRI LULC. The quality of the maps varies across different LC classes, continents, and countries. The maps' spatial detail representation was assessed at various homogeneity levels within a 3 × 3 kernel. Although considered as high-resolution maps, this study reveals that ESRI LULC and Dynamic World have less spatial detail than WorldCover. All maps have lower accuracies in heterogenous landscapes and in some countries such as Mozambique, Tanzania, Nigeria, and Spain. To select the most suitable product, users should consider both the map's accuracy over the area of interest and the spatial detail appropriate for their application. For future high-resolution GLC mapping, producers are encouraged to adopt standardized LC class definitions to ensure comparability across maps. Additionally, the spatial detail and accuracy of GLC maps in heterogeneous landscapes and over some countries are the key features that should be improved in future versions of the maps. Independent validation efforts at regional and national levels, as well as for LC changes, should be strengthened to enhance the utility of GLC maps at these scales and for long-term monitoring
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
About Attitudes and Perceptions: Finding the Proper Way to Consider Latent Variables in Discrete Choice Models
We provide an in-depth theoretical discussion about the differences between attitudes and perceptions, as well as an empirical exercise to analyze its effects. This discussion is of importance, as the large majority of papers considering attitudinal latent variables, just consider those as attributes affecting directly the utility of a certain alternative while systematic taste variations are rarely taken into account and perceptions are normally completely ignored. The results of our case study show that perceptions may indeed affect the decision making process and that they are able to capture a significant part of the variability that is normally explained by alternative specific constants. In the same line, our results indicate that attitudes may be a reason for systematic taste variations, and that a proper categorization of the latent variables, in accordance with the underlying theory, may outperform the customary assumption of linearity
IL-17RA Signaling Amplifies Antibody-Induced Arthritis
Objective: To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serumtransfer model. Methods: Wild-type and Il17ra 2/2 mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR. Results: Il17ra 2/2 mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/ CXCL5 MIP-1c/CCL9, MCP-3/CCL7, MIP-3a/CCL20, the cytokines IL-1b, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra 2/2 mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra 2/2 mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro. Conclusions: IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likel
STAGES IN THE ORIGIN OF VERTEBRATES: ANALYSIS BY MEANS OF SCENARIOS
Vertebrates lack an epidermal nerve plexus. This feature is common to many invertebrates from which vertebrates differ by an extensive set of shared-derived characters (synapomorphies) derived from the neural crest and epidermal neurogenic placodes. Hence, the hypothesis that the developmental precursor of the epidermal nerve plexus may be homologous to the neural crest and epidermal neurogenic placodes. This account attempts to generate a nested set of scenarios for the prevertebrate-vertebrate transition, associating a presumed sequence of behavioural and environmental changes with the observed phenotypic ones. Toward this end, it integrates morphological, developmental, functional (physiological/behavioural) and some ecological data, as many phenotypic shifts apparently involved associated transitions in several aspects of the animals. The scenarios deal with the origin of embryonic and adult tissues and such major organs as the notochord, the CNS, gills and kidneys and propose a sequence of associated changes. Alternative scenarios are stated as the evidence often remains insufficient for decision. The analysis points to gaps in comprehension of the biology of the animals and therefore suggests further research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72629/1/j.1469-185X.1989.tb00471.x.pd
MAKING ANIMALS ALCOHOLIC: SHIFTING LABORATORY MODELS OF ADDICTION
The use of animals as experimental organisms has been critical to the development of addiction research from the nineteenth century. They have been used as a means of generating reliable data regarding the processes of addiction that was not available from the study of human subjects. Their use, however, has been far from straightforward. Through focusing on the study of alcoholism, where the nonhuman animal proved a most reluctant collaborator, this paper will analyze the ways in which scientists attempted to deal with its determined sobriety and account for their consistent failure to replicate the volitional consumption of ethanol to the point of physical dependency. In doing so, we will see how the animal model not only served as a means of interrogating a complex pathology, but also came to embody competing definitions of alcoholism as a disease process, and alternative visions for the very structure and purpose of a research field
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
- …