1,026 research outputs found

    Neurophysiology

    Get PDF
    Contains reports on four research projects.Bell Telephone Laboratories, Inc.U.S. Air Force (Aeronautical Systems Division) under Contract AF 33(615)-1747National Aeronautics and Space Administration (Grant NsG-496)National Institutes of Health (Grant MH-04737-05)National Science Foundation (Grant GP-2495)The Teagle Foundation, Inc

    Neurophysiology

    Get PDF
    Contains reports on three research projects.National Institutes of Health (Grant 5 RO1 NB-04985-03)Instrumentation Laboratory under the auspices of DSR Project 55-257Bioscience Division of National Aeronautics and Space Administration through Contract NSR 22-009-138Bell Telephone Laboratories, Inc. (Grant)The Teagle Foundation, Inc. (Grant)U. S. Air Force (Aerospace Medical Division) under Contract AF33(615)-388

    Navigating the social world: The role of social competence, peer victimisation and friendship quality in the development of social anxiety in childhood

    Get PDF
    Social and communication (SC) difficulties predict increased social anxiety (SA) symptoms in childhood. Peer victimisation and friendship quality are commonly associated with both SC difficulties and SA. Based on this, we tested for a cascade effect of early SC difficulties, peer victimisation and friendship quality on SA in late childhood, using a population-based sample of 8028 children from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Parent-reported data were collected on SC difficulties at age 7 and SA at age 7, 10 and 13. Child-reported data on peer victimisation and friendship quality were collected at age 8. Our results revealed that SC difficulties predict increased negative friendship qualities and peer victimisation. Relational victimisation predicted increased SA symptoms at 13 years old. Neither overt nor relational victimisation mediated the developmental relationship between SC difficulties and SA. Furthermore, friendship quality did not moderate the developmental relationship between SC difficulties and SA. In addition, no sex differences were observed. The evidence demonstrates that peer victimisation and friendship quality do not explain why some children with SC difficulties go on to develop SA. Future research clarifying the complex etiological pathways contributing towards the development of SA in childhood and adolescence is warranted

    Neurophysiology

    Get PDF
    Contains reports on four research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grants MH-04737-03 and NB-04985-01)United States Air Force, Aeronautical Systems Division (Contract AF33(616)-7783)United States Air Force (Contract AF19(604)-6619), administered by Montana State CollegeNational Aeronautics and Space Administration (Grant NsG-496)Teagle Foundation, IncorporatedBell Telephone Laboratories, Incorporate

    Neurophysiology

    Get PDF
    Contains reports on eight research projects.Bell Telephone Laboratories, Inc.Teagle Foundation, Inc.National Science Foundation (Grant GP-2495)National Institutes of Health (Grants MH-04737-04)National Institutes of Health (NB-04985-01)U. S. Air Force. Aeronautical Systems Division (Contract AF 33(615)-1747)U. S. Air Force. Cambridge Research Laboratories (Contract AF19(628)-3807)U. S. Air Force. Electronic Systems Division (Contract AF19(628)-4147)National Aeronautics and Space Administration (Grant NsG-496

    Dirac cones in two-dimensional borane

    Get PDF
    We introduce two-dimensional borane, a single-layered material of BH stoichiometry, with promising electronic properties. We show that, according to Density Functional Theory calculations, two-dimensional borane is semimetallic, with two symmetry-related Dirac cones meeting right at the Fermi energy EfE_f. The curvature of the cones is lower than in graphene, thus closer to the ideal linear dispersion. Its structure, formed by a puckered trigonal boron network with hydrogen atoms connected to each boron atom, can be understood as distorted, hydrogenated borophene (Science \textbf{350}, 1513 (2015)). Chemical bonding analysis reveals the boron layer in the network being bound by delocalized four-center two-electron σ{\sigma} bonds. Finally, we suggest high-pressure could be a feasible route to synthesise two-dimensional borane.Comment: 5 pages, 3 figures, 1 tabl

    All-electron magnetic response with pseudopotentials: NMR chemical shifts

    Full text link
    A theory for the ab initio calculation of all-electron NMR chemical shifts in insulators using pseudopotentials is presented. It is formulated for both finite and infinitely periodic systems and is based on an extension to the Projector Augmented Wave approach of Bloechl [P. E. Bloechl, Phys. Rev. B 50, 17953 (1994)] and the method of Mauri et al [F. Mauri, B.G. Pfrommer, and S.G. Louie, Phys. Rev. Lett. 77, 5300 (1996)]. The theory is successfully validated for molecules by comparison with a selection of quantum chemical results, and in periodic systems by comparison with plane-wave all-electron results for diamond.Comment: 25 pages, 4 tables, submitted to Physical Review

    Neurophysiology

    Get PDF
    Contains reports on sixo research projects.National Institutes of Health (Grant 5 RO1 NB-04985-03)National Institutes of Health (Grant 5 RO1 NB-4897-03)National Institutes of Health (Grant NB-06251-01)U.S. Air Force (Office of Scientific Research) under Grant AF-AFOSR-880-65U.S. Air Force (Research and Technology Division) under Contract AF33(615)-1747The Teagle Foundation, Inc. (Grant)Bell Telephone Laboratories, Inc. (Grant)Instrumentation Laboratory under the auspices of DSR Project 55-257Bioscience Division of National Aeronautics and Space Administratio

    High-Pressure Phase Stability and Superconductivity of Pnictogen Hydrides and Chemical Trends for Compressed Hydrides

    Get PDF
    Binary hydrides formed by the pnictogens of phosphorus, arsenic and antimony are studied at high pressures using first principles methods. Stable structures are predicted and their electronic, vibrational and superconducting properties are investigated. We predict that SbH4_{4} and AsH8_{8} will be high-temperature superconductors at megabar pressures, with critical temperatures in excess of 100 K. The highly symmetric hexagonal SbH4_{4} phase is predicted to be stabilized above about 150 GPa, which is readily achievable in diamond anvil cell experiments. We find that all phosphorus hydrides are metastable with respect to decomposition into the elements within the pressure range studied. Trends based on our results and literature data reveal a connection between the high-pressure behaviors and ambient-pressure chemical quantities which provides insight into understanding which elements may form hydrogen-rich high-temperature superconducting phases at high pressures.The authors thank Eva Zurek for sharing structure data for iodine hydride. The work at Jilin Univ. is supported by the funding of National Natural Science Foundation of China under Grant Nos. 11274136 and 11534003, 2012 Changjiang Scholar of Ministry of Education and the Postdoctoral Science Foundation of China under grant 2013M541283. L.Z. acknowledges funding support from the Recruitment Program of Global Youth Experts in China. Part of calculations was performed in the high performance computing center of Jilin Univ. R.J.N. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the UK [EP/J017639/1]. R.J.N. and C.J.P. acknowledge use of the Archer facility of the U.K.’s national high-performance computing service (for which access was obtained via the UKCP consortium [EP/K013564/1]).This is the final version of the article. It first appeared from ACS via https://doi.org/10.1021/acs.chemmater.5b0463
    • …
    corecore