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A. STABILITY OF NETWORKS WITH LOOPSt

1. State Transition Matrix of a Neural Network

Let XA represent a network of N formal neurons with interacting afferents, i. e.,

neurons which are capable of computing any Boolian function of their inputs, that con-

tain M external inputs, and are organized by means of internal loops. We denote by

xl(t), x 2 (t) .. . xM(t) the external inputs at time t, whereas Yl(t), Y2 (t) ... YN(t) denotes

the outputs at time t, which are also regarded as the state S (t) of the network at that

time. We may therefore write,

S (t) = (y l (t), Y Z(t), ... YN(t)). (1)

N N
The number of network states is 2 , which we denote by Si(i= 1, 2, ... 2 ). We denote

by X(t) the input configuration x 1 (t), x 2 (t), ... xM(t) at time t, of which there exist 2

different input configurations, X (m= 1, 2,... 2 M ) .

We define the network J/ by a set of N Boolian functions of the form:

Y1(t) = fl[xl(t-l),... xM(t-l); yl(t-1),... YN(t-1)]

Y2(t)= f2[xl(t-1),... xM(t-1); yl(t-1),... YN(t-1)]
(2)

YN(t) = fN[xl(t-1),.. xM(t-1); yl(t-1),... yN(t-1)].
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Equations 2 may be written as

Yl(t) = f1 [X(t-1); S(t-1)]

y 2 (t) = f 2 [X(t-1); S(t-1)]

(3)

YN(t) = fN[X(t-1); S(t-1)].

For a particular configuration, Xm, of the inputs, Eqs. 3 are Boolian functions

of Y1 2 , ... YN' i. e.,

y (t) = fl[Xm; S(t-1)]

y 2(t)= f 2 [Xm; S(t-1)]
(4)

YN(t) = fN[Xm; S(t-l)].

For each value of S(t-1) = Si we obtain a new state (yl(t), 2 (t), ... YN(t)) = S.. For
each input X = Xm' Nwe wish to consider the state transition matrix /(X ), i. e. , themN m
Boolian matrix of 2 rows and columns in which the .#(X m)ij term is 1 if the network

goes from the state S. to the state S. under the input Xm, and 0 otherwise. Therefore,

these matrices .(Xm) have one and only one 1 in each row. If (a, P,... v) are the com-

ponents of Sj, i. e. , they constitute the string of zeros and ones that define Sj, -W(X)ij
may be written

X)ij f S i )  2 ( ; S i )  ' f i )  
(5)

following the convention in which

fn X i fn(; Si) (negation)

(6)
f (X; S) = f (X; Si).

Example 1. Consider the network of Fig. XV-1, for which the functions fl and f2 are
given by

f1 = xl 1 2 + x 1Y 1Y 2 + x 1 1Y 2

f2 = X2 Y1 + x 2 Y1'

The state transition matrix, A(X), is
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S.

00 01 10 11

00 X1X2 x1x2 X1X2 X1X 2

01 X1X2 x1x2 X1X2 1 x2
S.

1 10 x1x 2  x1X 2  X1x 2  X1X 2

11 x 2  0 0

For example, the input X m = (0, 0), gives _/(0, 0),

O o) 0 0 1 00
0 0 0 1
0 1 0 0

which means that, under the input (0, 0), the transitions of states are

(0, 0) -(0, 0)

(0, 1) - (1, 0)

(1, 0) - (0, 1)

(1,1) - (0, 1)

2. Stability and Oscillations

Definition 1. A network .V is stable under a constant input, Xim if, under that input,
the network, after changing, or not to a new state, will remain in said state regardless
of its initial state. Otherwise, the network is said to be unstable under Xm

Definition 2. A network is completely unstable under Xm if it is unstable for any
given initial state.

Definition 3. If a network is unstable under Xm, it oscillates in one or more modes
depending upon the state of the network when X was applied. The order of a mode of

2 moscillation is the number of states which are involved in the oscillation.

The conditions of stability for IV/-networks may be derived from their transition state
matrices, A'(X m), by using the following algorithm (which is a consequence of the

meaning of -(Xm); the proof of it is rather self-evident and has been left as an exercise
for the reader):

a.) If all terms in the diagonal of f(Xm) are zero, the network is completely
unstable, where the converse also holds true. Therefore, the necessary and sufficient
condition for complete unstability is that the equation
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S ()ii 0 (7)

i

has solutions. Under these solutions the network will be completely unstable.

Example 2. For the network of Example 1, the inputs which provoke complete

instability are the solutions of

X1X2 + x1x2 + X1X2 + 0 = x1 + x2 = 0

which has the unique solution x 1 = 1, x2 = 0, i. e. , under the input (1,0) the network is

completely unstable.

b.) If any terms in the diagonal of '(Xm) are 1, we delete the rows and columns

which correspond to them, ending in a new matrix in which two alternatives are possible;

bl. Some rows have only O's.

b Z. All rows have l's.

Under the latter case, the network is unstable when the initial state is any of those

states which are present in the reduced matrix. In the former case we delete rows and

columns corresponding to the states whose rows are all zeros. A new matrix is obtained

that follows either alternatives b 1 or b Z. If it follows bl, we continue the process of

reduction until we end in a minor that follows b 2 . If, by iteratively applying bl, we end

in only one state, the network is stable.

Example 3. The matrix /(0, 0) for the network of Fig. XV-1 is

(0, 0)= 0 o 1 0o
(0 0 0 1
0 1 0 0

By deleting the first row and column, which have 1 in the diagonal, we obtain

' (0, 0) = 0 0 1
which follows b2. Therefore, under the input (0, 0), the network is unstable if the initial

state is either (0, 1), (1,0), or (1, 1).

For the same network, W(1, 1) is

0 0 0 1
(1 1) 0 1 0 0

S 1 0 0 0
1 0 0 0

By deleting the second row and column, we conclude that the network is unstable under

the input (1, 1) if the initial state is either (0, 0), (1,0), or (1, 1). Similarly, the network

QPR No. 83 169



(XV. NEUROPHYSIOLOGY)

is unstable for the input (0, 1) if the initial state is either (0, 0), (0, 1), or (1, 1).

Example 4. The network of Fig. XV-2 has no external inputs. The function of each

neuron is, respectively,

fl 1 YY 3 + Y1Y3

f2 Yl 2

f3 = Y2Y3 + 2Y3

The state transition matrix is (blanks are zeros)

(fl'f 2 f 3)

(Yl,Y 2 , Y3)

1 2 3 4 5 6 7 8

1 000 1

2 001 1

3 010 1

4 011 1

5 100 1

6 101 1

7 110 1

8 111 1

By inspection of the diagonal, we can delete rows and columns 1 and 5. Applying cri-

terion bl, we then delete 8 and 4. Reapplying criterion bl, we delete 2; again, we

delete 3 and 6, ending with a single state, the 7 th Therefore, the network is stable

for any given initial state.

3. Stability for a Single Neuron

For the case of a single neuron computing any of the possible Boolian functions of

its M inputs, the necessary and sufficient conditions for stability adopt a much simpler

form. In this case, we have only one Boolian function that describes the neuron, which

is of the form:

y(t) = f[X(t-l);y(t-l)] (8)

The transition state matrix, .4(X), is

f(X, 0)

f(X; 1)

QPR No. 83

f(X; 0)
(X) =

f(X; 1)

170



(XV. NEUROPHYSIOLOGY)

Since there exist only two states, unstability of any kind implies complete unstability.

Therefore, the necessary and sufficient conditions for stability are manifest in stipu-

lating that the equation

f(X; 0) + f(X; 1) = 0 (10)

has no solution, i. e., the solutions of Eq. 10 produce unstability. If unstable, the

neuron will be characterized by the simplest oscillation 010101...

By negating Eq. 10, we obtain

f(X; 0) • f(X; 1) = 1 (11)

Therefore, the solutions of

f(X; 0) • f(X; 1) = 0 (12)

are inputs under which the neuron is stable, i. e. , Eq. 12 gives the necessary and

sufficient condition for stability.

Example 5. Consider the neuron of Fig. XV-3, which computes the function

f = x 1 x2 x3Y + (x 1+xz)y.

Equation 12 now takes the form

X1X2x3 • (X 1 +x 2 ) = x 1 x 2 x 3 x 1 x 2 = 0.

Therefore, the neuron is stable for any input.

R. Moreno-Diaz
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B. MYELINATED FIBERS IN THE DORSAL ROOTS OF CATS

With Dr. J. Y. Lettvin we have been studying the electrical properties of those

structures in cat intradural dorsal root which we could impale with KC1-filled micro-

pipettes. The experimental technique and preliminary results were reported in Quarterly

Progress Report No. 78 (pages 281-282). We report here the conclusions reached after

using two different impalement techniques.
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In the first technique (tapped penetrations), the micropipette tip was positioned in a

region of high resistivity by using a micrometer and the end of the micrometer barrel

tapped. This normally resulted either in returning the tip to a region of low resistivity

and no resting potential or in penetrating a unit showing approximately -70 my resting

potential, electrotonic charging properties, and, when sufficiently stimulated, a full-

scale (>80 my) action potential. Since the shape of the electrotonic charging curve was

consistent with that expected for a parallel RC circuit, and since this would not be the

case if we were charging some unit through a length of internode, we believe that the

RC combination is at the point of penetration into the fiber. Similarly, we believe the

point of penetration to be a point of excitability because, if it were not, the RC combin-

ation would give rise to a shunting of the action potentials from neighboring excitable

regions, and this was not noticed. Hence, at the point of penetration there is an excit-

able membrane. That this membrane is not associated with a naturally occurring node

of Ranvier can be inferred from the fact that the observed resistances (R~10 M) are

much too low and the observed capacitances (C~6 pf) much too high, which the fre-

quency of penetration is much higher than would be expected if only Ranvier nodes

could be penetrated. We conclude, therefore, that penetration must be internodal

and that the act of penetration creates an artificial node of Ranvier whose area is

somewhat larger than that of naturally occurring ones. We account for this by sup-

posing that tapping of the micrometer barrel causes a complex orbital motion of the

micropipette tip which eventually ruptures the myelin, leaving the way open for pene-

tration of the axolemma which must be excitable along its entire length.

W. F. Pickard

C. FURTHER STUDIES WITH CYLINDER LENSES

In Quarterly Progress Report No. 73 (pages 309-316), we have described a method

for testing camera lenses which makes use of the properties of the crossed-cylinder

lens. In a later report (Quarterly Progress Report No. 77, pages 383-389), we showed

how a small section of such a lens can be fabricated by the torsional deformation of a

prism of glass. It now appears that this method can be generalized to permit the fabri-

cation of a large-aperture sphero-cylinder lens.

The method depends on the deformation of square plates by couples of force at

opposite corners. The treatment of this problem in elasticity theory may be found in

standard texts; a formula that is valid for deformations that are small compared with

the thickness of the plates is given by l , 2

z = k x y. (1)

We change coordinates as follows:
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1
a = (x+y)

1

p 1  (x-y),

and note that

2 2 2 2 2
x +y =a +p= r

Equation 1 may be transformed as follows:

z = k x y [x2+y -(x-y)2]

k2 2z = - r -kP

The first and second terms of Eq. 2 represent, respectively, a spherical component

of curvature k/2, and a cylinder component with axes a, p and curvature -k. This par-

ticular combination of spherical and cylinder components is known as the "crossed-

cylinder lens," and is used extensively in ophthalmic refractive diagnosis.3 If one wishes

to isolate the "pure" cylinder component, corresponding to the second term of Eq. 2, an

additional spherical lens may be employed to cancel the spherical component.

The feature of this cylinder lens construction that recommends it in preference to

more obvious methods, as for example, wrapping a sheet of glass around a precisely

formed cylindrical mandrel of large radius of curvature, is that the forces are self-

equalized and need be applied at only four points.

1. Practical Features in the Construction of Such a Lens

It will be apparent that there is a maximum refractive power, relative to the size of

the plates, which can in practice be attained because of the combination of two limita-

tions: the deformation of the plate must be small compared with the thickness of the

plate, in order that Eq. 1 will apply, and the breaking strength of the glass must not be

exceeded. (Quartz would give greater strength; various plastics would permit greater

deformation before breaking but would have inferior optical properties.)

Let us now consider the various methods by which cylinder lenses can be fabricated

from deformed plates of glass. In Fig. XV-4 we show two plates, each 3 mm thick and

78 mm square, which have been spaced with rubber shims, those in one pair of opposite

corners being twice the thickness of the others, and taped to provide a reservoir for

fluid or plastic. (With careful manipulation, the tape can be applied after the glass has

been deformed by tightening the clamps.) The space between the plates may be filled

with an inert transparent fluid of low vapor pressure such as a silicone oil, or it can be
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cast with an epoxy resin for a more permanent and useful construction. For this prupose,
we can recommend Maraset Type 657 A and B casting resin combination (from The

Fig. XV-4.

Two square optical glass plates, taped to
contain liquid or epoxy resin, are stressed
in torsion by external clamps and internal
rubber shims.

Marblette Corporation, Long Island City, N. Y.) mixed as directed, centrifuged to
remove bubbles, and allowed to harden undisturbed at room temperature for one week.
Two out of six lenses fabricated in this way have been judged to be near-perfect; the
method is still subject to some variability.

Useful results have been obtained with these plastic-cast lenses, but there are two
evident disadvantages to this construction: the glass is left under strain and is thus prone
to fatigue failure or breakage with small shocks; and the homogeneity of the epoxy plas-
tic is inferior to that of optical glass, and is liable to change with absorption of solvents,
age, heat, and so forth. A way around these difficulties is suggested by a study of the
method used by Bernhard Schmidt to fabricate the corrector plate for his famous tele-

4scope design. This method of construction, which we have not yet tested, is the fol-
lowing: One starts with the previous lens, epoxy resin cast between the deformed glass
plates. This sandwich of glass and plastic is ground and polished flat on the outer sur-
faces, and the components are then separated by using heat, solvents or both. These
glass components are each crossed-cylinder lenses of dioptric strength determined by
the index of the glass rather than the plastic. They may be used separately, or may be
glued together at their now flat inner surfaces by using the thinnest possible layer of
cement, to form a double-strength, unstrained, cross-cylinder lens of superior
quality.
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2. Tests of Plastic-Cast Crossed-Cylinder Lens

The method that we use for testing crossed-cylinder lenses is the following: A col-

limator is first adjusted to project an image of a monochromatic point source. This

simulated monochromatic star image is photographed with a long focal length camera

lens of aperture similar to that of the collimator. Interposed between these two lens

Fig. XV-5.

Test of crossed-cylinder lens of new con-
struction; space between plates has been
cast in epoxy resin. A perfect lens would
image the grid without distortion.

systems is the crossed-cylinder lens, together with a rectangular grid, here a photo-

chemically etched screen of beryllium copper having a 'wire' thickness that is small

compared with the mesh spacing, which is 2-5 mm. The grid is oriented so as to give

minimal diffraction blur, which means that its axes are parallel to the edges of the

deformed square plate lens.

With this arrangement, the camera photographs what is in effect an image in minia-

ture of the aperture of the cylinder lens as metered by the grid. The quality of the cyl-

inder lens is indicated by the degree of distortion of the image of the rectangular grid.

In Fig. XV-5 we show the results of a test of a plastic-cast lens of 78-mm square aper-

ture, and strength ±1/8 diopter. [The optician's formula for this lens is (-1/8,

+1/4 Diopters).] For this test, the angular subtense of the collimator was 1/50,000 radian,

and the spectrum of the source was restricted to 5750 ± 50 A; the camera and collimator

lenses were high-quality air-spaced doublet lenses. Thus, we can reasonably ascribe

the defects in the pattern of this grid, which is seen to exhibit a 'folding over' at the

corners where the external clamps were applied, to the cylinder-lens construction. The
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Fig. XV-6. Comparison of crossed-cylinder lenses of same dioptric powers and
differing constructions. (a) Lens of new construction. (b) Ophthal-
mic lens.

Fig. XV-7. Distortion of the pattern of Fig. XV-8. Distortion of the pattern of
the grid caused by spherical the grid caused by coma.
aberration.
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central regions of this lens (not our best lens) are, however, unaffected by this defect.

Lenses of this type were fabricated from very good quality plate glass of 2. 5-3 mm

thickness; this power is the highest possible without probable breakage caused by delayed

fatigue failure of the glass. By coincidence, this is also the smallest available prescrip-

tion power available in ophthalmic crossed-cylinder lenses, and permits a comparison

of optical quality. In Fig. XV-6a we show a test on a finer grid than before, of the

central 50 mm of our very best plastic-cast cylinder lens. In Fig. XV-6b is shown a

similar test of the best of three ophthalmic crossed-cylinder lenses. The improved per-

formance of the new construction is thus demonstrated, although the comparison is

obviously an unfair one. The defects of the ophthalmic lens shown here are so small

that they could not be observed by any test with an unaided human eye.

3. Use of Crossed-Cylinder Lens to Test Camera Lenses

The method that we use to test crossed-cylinder lenses can also serve as a test of

the camera lens, once the quality of the crossed-cylinder lens has been established. The

distortion of the pattern of the grid will give qualitative indication of the predominate

aberration of the lens. In Fig. XV-7 we show the pattern of the grid characteristic

of primary spherical aberration, simulated here by means of a supplementary lens pair,

a flat convex and a bent concave lens of opposite dioptric powers. In Fig. XV-8 we show

the distortion characteristic of the off-axis aberration coma.

We regard this extension of our previously reported lens-testing procedures as being

of importance, since it enables one to test the performance of the lens over its entire

aperture. Thus one can detect defects of figuring, as well as formula. Still another

possibility is to test optical elements, for example, mirrors, prisms, filters, window

glass elements, thereby using the instrument in the manner of a striascope. The advan-

tage is that one need not record or interpret light-intensity variations; the distortion of

the pattern of the grid gives the information.

An advantage of methods that use the crossed-cylinder lens over other lens tests

that make use of aperture screens (of which the Hartmann test is perhaps the best exam-

ple) is that the axis of the grid can be adjusted so as to give minimal diffraction blurring

of the pattern. Thus, only to the extent that the lens produces aberrations affecting the

orientation of the elements of the rectangular grid, is the pattern subject to diffraction

blurring. In effect, then, the more perfect the lens, or other element under test, the

more sensitive is the test. In our present experiments the brightness and spot

size of our collimator limit the magnification that can be attained with time exposures

of reasonable duration. A neon laser of modest power should remove this limitation

and enable us to determine the ultimate sensitivity of the method.

B. Howland, S. J. Wiesner

[Stephen J. Wiesner is with the Department of Physics, Brandeis University.]
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