164 research outputs found

    The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cells.

    Get PDF
    Growth arrest-specific 5 (GAS5) lncRNA promotes apoptosis, and its expression is down-regulated in breast cancer. GAS5 lncRNA is a decoy of glucocorticoid/related receptors; a stem-loop sequence constitutes the GAS5 hormone response element mimic (HREM), which is essential for the regulation of breast cancer cell apoptosis. This preclinical study aimed to determine if the GAS5 HREM sequence alone promotes the apoptosis of breast cancer cells. Nucleofection of hormone-sensitive and -insensitive breast cancer cell lines with a GAS5 HREM DNA oligonucleotide increased both basal and ultraviolet-C-induced apoptosis, and decreased culture viability and clonogenic growth, similar to GAS5 lncRNA. The HREM oligonucleotide demonstrated similar sequence specificity to the native HREM for its functional activity and had no effect on endogenous GAS5 lncRNA levels. Certain chemically modified HREM oligonucleotides, notably DNA and RNA phosphorothioates, retained pro-apoptotic. activity. Crucially the HREM oligonucleotide could overcome apoptosis resistance secondary to deficient endogenous GAS5 lncRNA levels. Thus, the GAS5 lncRNA HREM sequence alone is sufficient to induce apoptosis in breast cancer cells, including triple-negative breast cancer cells. These findings further suggest that emerging knowledge of structure/function relationships in the field of lncRNA biology can be exploited for the development of entirely novel, oligonucleotide mimic-based, cancer therapies.Breast Cancer No

    Targeting long non-coding RNAs (lncRNAs) with oligonucleotides in cancer therapy

    Get PDF
    This document is the Accepted Manuscript version of a published work that appeared in final form in Translational Cancer Research. To access the final edited and published work see http://dx.doi.org/10.21037/tcr.2016.10.63No abstrac

    Robust Uptake of Magnetic Nanoparticles (MNPs) by Central Nervous System (CNS) Microglia: Implications for Particle Uptake in Mixed Neural Cell Populations

    Get PDF
    Magnetic nanoparticles (MNPs) are important contrast agents used to monitor a range of neuropathological processes; microglial cells significantly contribute to MNP uptake in sites of pathology. Microglial activation occurs following most CNS pathologies but it is not known if such activation alters MNP uptake, intracellular processing and toxicity. We assessed these parameters in microglial cultures with and without experimental ‘activation’. Microglia showed rapid and extensive MNP uptake under basal conditions with no changes found following activation; significant microglial toxicity was observed at higher particle concentrations. Based on our findings, we suggest that avid MNP uptake by endogenous CNS microglia could significantly limit uptake by other cellular subtypes in mixed neural cell populations

    Accelerated and efficient neuronal differentiation of Sox1GFP mouse embryonic stem cells in vitro using nicotinamide

    Get PDF
    A major challenge for advancement of clinical neuronal replacement therapies is the production of high yields of purified neuronal populations of appropriate phenotype with control over proliferation to prevent tumorigenesis. We previously reported that treatment of mouse embryonic stem cell (mESC;46CSox1GFP reporter cell line) monolayer cultures with the vitamin B3 metabolite nicotinamide at the early onset of development not only increased the efficiency of neuronal generation by two-fold but also enriched the ratio of purified neurons to non-neuronal cells in culture. This study aimed to investigate if nicotinamide enhances neural induction in this model and whether it also promotes the production/differentiation of specific neuronal subtypes. To address these aims, monolayer mESC cultures were treated with nicotinamide (10 mM) for different durations and immunocytochemistry/fluorescence microscopy was performed to assess the expression of stem cell, neural progenitor (NP) and neuronal subtype markers. Morphometric analyses were also performed to assess the extent of differentiation. Nicotinamide treatment significantly decreased Oct4+ pluripotent cells and concomitantly increased GFP+ cells at day 4, suggesting enhanced neural lineage commitment. By day 14, nicotinamide treatment (from day 0-7) reduced both Oct4+ and GFP expression concomitant with enhanced expression of neuron-specific β-tubulin, indicative of accelerated neuronal differentiation. Nicotinamide selectively enhanced the production of catecholaminergic, serotonergic and GABAergic neurons and, moreover, enhanced various aspects of neuronal morphology and maturation. Collectively, these data demonstrate a direct effect of nicotinamide at the initial stages of embryonic stem cell differentiation which could be critical for rapidly andefficiently promoting neural commitment to highly enriched neuronal lineages. The strong clinical potential of nicotinamide could successfully be applied to future neural cell-based therapies including Parkinson’s and Huntington’s disease, both to eradicate proliferating cells and for a more enhanced and specific differentiatio

    The long non-coding RNA NEAT1 regulates cell survival in breast cancer cell lines

    Get PDF
    Background Nuclear long non-coding RNAs (LncRNAs) regulate various cellular processes including the organization of nuclear sub-structures, the alteration of chromatin state, and the regulation of gene expression. Nuclear Enriched Abundant Transcript 1 (NEAT1) is a nuclear lncRNA transcribed from chromosome 11q13. Two transcripts are produced from the NEAT1 gene, 3.7-kb NEAT1_v1 and 23-kb NEAT1_v2. Both isoforms participate in the formation of the nuclear paraspeckles . NEAT1 is reported to be overexpressed in prostate cancer and a direct transcriptional target of hypoxia-inducible factor in many breast cancer cell lines. The aims of this study were to determine the effects of silencing NEAT1 on breast cancer cell survival. Method MCF7 and MDA-MB 231 cells were transfected with siRNAs to different NEAT1 sequences or NEAT1 antisense oligonucleotides (ASO). Controls received scrambled siRNA or scrambled oligonucleotide, as appropriate. In some experiments, cells were exposed to ultraviolet-C (UV-C) light post-transfection to induce apoptosis, and then culture viability and apoptosis were assessed. NEAT1 expression was evaluated by qRT-PCR TaqMan® analysis. Results In MCF7 and MDA-MB-231 cells, siRNA-mediated silencing of NEAT1 reduced basal survival and after UV-C irradiation and decreased their colony forming ability. NEAT1 ASOs were more effective in silencing NEAT1 and caused a greater reduction in cell viability. NEAT1 silencing also affected cell cycle profile by enhancing the proportion of cells in G0/G1 phase. Conclusion NEAT1 regulates the survival of Breast cells. Down regulation of NEAT1 expression decreased cell survival, proliferation and modulated cell cycle progression of breast cancer cells, indicating a link between the NEAT1 expression levels and carcinogenesis of breast cancer

    GAS5 lncRNA Modulates the Action of mTOR Inhibitors in Prostate Cancer Cells

    No full text
    Background There is a need to develop new therapies for castrate-resistant prostate cancer (CRPC) and growth arrest-specific 5 (GAS5) long non-coding RNA (lncRNA), which riborepresses androgen receptor action, may offer novel opportunities in this regard. GAS5 lncRNA expression declines as prostate cancer cells acquire castrate-resistance, and decreased GAS5 expression attenuates the responses of prostate cancer cells to apoptotic stimuli. Enhancing GAS5 lncRNA expression may therefore offer a strategy to improve the effectiveness of chemotherapeutic agents. GAS5 is a member of the 5' terminal oligopyrimidine gene family, and we have therefore examined if mTOR inhibition can enhance cellular GAS5 levels in prostate cancer cells. In addition, we have determined if GAS5 lncRNA itself is required for mTOR inhibitor action in prostate cancer cells, as recently demonstrated in lymphoid cells. Method The effects of mTOR inhibitors on GAS5 lncRNA expression and cell proliferation were determined in a range of prostate cancer cell lines. Transfection of cells with GAS5 siRNA and plasmid constructs was performed to determine the involvement of GAS5 lncRNA in mTOR inhibitor action. Results Treatment with rapamycin and rapalogues increased cellular GAS5 levels and inhibited culture growth in both androgen-dependent (LNCaP) and androgen-sensitive (22Rv1) cell lines, but not in androgen-independent (PC-3 and DU145) cells. GAS5 silencing in both LNCaP and 22Rv1 cells decreased their sensitivity to growth inhibition by mTOR inhibitors. Moreover, transfection of GAS5 lncRNA sensitized PC-3 and DU145 cells to mTOR inhibitors, resulting in inhibition of culture growth. Conclusion mTOR inhibition enhances GAS5 transcript levels in some, but not all, prostate cancer cell lines. This may in part be related to endogenous levels of GAS5 expression, which tend to be lower in prostate cancer cells representative of advanced disease, particularly since current findings demonstrate a role for GAS5 lncRNA in mTOR inhibitor action in prostate cancer cells

    The protein phosphatase 4 - PEA15 axis regulates the survival of breast cancer cells

    Get PDF
    BACKGROUND: The control of breast cell survival is of critical importance for preventing breast cancer initiation and progression. The activity of many proteins which regulate cell survival is controlled by reversible phosphorylation, so that the relevant kinases and phosphatases play crucial roles in determining cell fate. Several protein kinases act as oncoproteins in breast cancer and changes in their activities contribute to the process of transformation. Through counteracting the activity of oncogenic kinases, the protein phosphatases are also likely to be important players in breast cancer development, but this class of molecules is relatively poorly understood. Here we have investigated the role of the serine/threonine protein phosphatase 4 in the control of cell survival of breast cancer cells. METHODS: The breast cancer cell lines, MCF7 and MDA-MB-231, were transfected with expression vectors encoding the catalytic subunit of protein phosphatase 4 (PP4c) or with PP4c siRNAs. Culture viability, apoptosis, cell migration and cell cycle were assessed. The involvement of phosphoprotein enriched in astrocytes 15kDa (PEA15) in PP4c action was investigated by immunoblotting approaches and by siRNA-mediated silencing of PEA15. RESULTS: In this study we showed that PP4c over-expression inhibited cell proliferation, enhanced spontaneous apoptosis and decreased the migratory and colony forming abilities of breast cancer cells. Moreover, PP4c down-regulation produced complementary effects. PP4c is demonstrated to regulate the phosphorylation of PEA15, and PEA15 itself regulates the apoptosis of breast cancer cells. The inhibitory effects of PP4c on breast cancer cell survival and growth were lost in PEA15 knockdown cells, confirming that PP4c action is mediated, at least in part, through the de-phosphorylation of apoptosis regulator PEA15. CONCLUSION: Our work shows that PP4 regulates breast cancer cell survival and identifies a novel PP4c-PEA15 signalling axis in the control of breast cancer cell survival. The dysfunction of this axis may be important in the development and progression of breast cancer

    Interactions between PP4 and PEA-15 in the regulation of cell proliferation and apoptosis of breast cancer cells

    Get PDF
    Background The serine/threonine protein phosphatase 4 (PP4) is recognised to regulate a variety of cellular functions. Our previous work has shown that the catalytic subunit of PP4 (PP4c) promotes cell death and inhibits proliferation in breast cancer cells, suggestive of a role of PP4c as tumour suppressor gene. Phosphoprotein enriched in astrocytes 15 (PEA-15), a member of the death effector domain protein family known to control cell survival, is reported to be regulated by PP4c. The aims of this study were to investigate the involvement of PEA-15 in mediating the effects of PP4c on breast cancer cells. Method PEA-15 phosphorylation was examined by western blot analysis on proteins extracted from MCF7 and MDA-MB-231 cells over-expressing PP4 and PP4 knock down cells. To investigate the role of PEA-15 in mediating the effects of PP4c, MCF7 and MDA-MB-231 were transfected with control (-) siRNA or with three different PEA-15 specific siRNAs. 48 h post-transfection, control cells (transfected with negative control siRNA) and cells transfected with PEA-15 siRNAs were transiently transfected with pcDNA3.1-PP4c expression construct or pcDNA3.1. Cell viability and apoptosis level were assessed post transfection. Results In MCF7 and MDA-MB-231 cells, the phosphorylation state of PEA-15 increased when PP4c expression was suppressed and decreased when PP4c was over-expressed. Over-expression of PP4c in cells transfected with (-) siRNA caused 50% reduction in viability compared to cells transfected with empty vector. Cells transfected with PEA-15 siRNAs showed a decrease in viable cell number and long term survival. However, over-expression of PP4c in these cells did not have any additional effect on the decrease in cell viability. Conclusion These observations suggest that the induction of apoptosis by over-expression of PP4c is mediated, at least in part, by the dephosphorylation of PEA-15. The interactions between PEA-15 and PP4c may therefore be critical in breast cancer tumorigenesis

    Regulation of the cell cycle and cell death by protein phosphatase 4 in breast cancer cell lines

    Get PDF
    Background At the molecular level, cell death is often regulated by the level of phosphorylation of particular proteins, i.e. by the balance of between opposing kinase and phosphatase activities on those proteins. Protein phosphatase 4 (PP4) is a PP2A-related serine/threonine phosphatase. PP2A has already been implicated in the control of cell proliferation, cell cycle and tumorigenesis. Using a functional expression cloning strategy, we have previously identified the catalytic subunit of PP4 (PP4c) as an important gene influencing the regulation of both apoptosis and cell proliferation in human leukaemic cell lines and in normal lymphocytes. The aims of this study were to examine the effects of PP4c overexpression and silencing on the cell death and survival of breast cancer cell lines. Method MCF7 and MDA-MB-231 cells were transfected with pcDNA3.1 encoding PP4c (pcDNA3-PP4c) or siRNAs to different PP4c sequences. Cells transfected with scrambled siRNA or empty vector were considered as controls. Culture viability, apoptosis and cell cycle were assessed post transfection. Results In MCF7 and metastatic MDA-MB-231 cells, PP4c over-expression exerted an inhibitory effect on cell proliferation, enhanced spontaneous apoptosis and decreased their colony forming ability. Conversely, siRNA mediated silencing of PP4 enhanced the proliferation and survival of MCF7 and MDA-MB-231 cells, affected cell cycle kinetics by enhancing the proportion of cells in S and G2/M phases, increased the colony forming ability and stimulated the anchorage independent growth. Conclusion PP4c promotes cell death and inhibits proliferation in breast cells, suggestive of a role of PP4c as tumour suppressor gene. Down regulation of PP4c expression increases cell survival, proliferation and anchorage independent growth of breast cancer cells, indicating a potential link between the PP4c expression levels, tumorigenesis and metastasis

    The hormone response element mimic sequence of GAS5 lncRNA is sufficient to induce apoptosis in breast cancer cell lines – towards oligonucleotide therapies?

    No full text
    Background Growth arrest-specific 5 (GAS5), a non-protein coding gene, encodes snoRNAs and lncRNA; transcript levels are controlled by the mTOR and nonsense-mediated decay pathways. GAS5 lncRNA promotes the apoptosis of breast cells, including triple-negative breast cancer (TNBC) cells, but its expression is down-regulated in breast cancer. Rapalogues enhance GAS5 levels in oestrogen receptor-positive breast cancer cells but not in TNBC cells, so that mTOR inhibitor-independent induction of GAS5 may be more productive in enhancing apoptotic responses to therapies. Notably, GAS5 lncRNA acts by riborepression of glucocorticoid/related receptors; a stem-loop sequence constitutes the GAS5 hormone response element mimic (HREM). The aim of this study was to determine if the GAS5 HREM sequence alone is sufficient to promote the apoptosis of breast cancer cells. Method Cells were nucleofected with a DNA oligonucleotide corresponding to the GAS5 lncRNA HREM; controls received oligonucleotides either with scrambled GAS5 sequence or retaining stem-loop structure but lacking the GAS5 HRE consensus; mock-transfected cells were also studied. Cells were irradiated with ultraviolet-C (UV-C) light at 20 h post-transfection to induce apoptosis. Culture viability and apoptosis were assessed and cellular GAS5 levels were determined by RT-qPCR. Results The basal apoptotic rate almost doubled in MCF7 and MDA-MB-231 cells transfected with the HREM oligonucleotide compared with controls. This effect was apparent at 20 h post­-transfection, and a corresponding decrease was observed in culture viability. The HREM sequence also enhanced UV-C-induced apoptosis in an additive manner in both cell lines. Endogenous GAS5 lncRNA expression was unaffected by transfection of the HREM sequence. Conclusion The GAS5 lncRNA HREM is sufficient to induce apoptosis in breast cancer cells, including TNBC cells. This study serves as an exemplar of how emerging knowledge of biologically important lncRNAs may be exploited towards the development of novel oncotherapeutic agents
    corecore