45 research outputs found

    Ab-initio theory of quantum fluctuations and relaxation oscillations in multimode lasers

    Full text link
    We present an \emph{ab-initio} semi-analytical solution for the noise spectrum of complex-cavity micro-structured lasers, including central Lorentzian peaks at the multimode lasing frequencies and additional sidepeaks due to relaxation-oscillation (RO) dynamics. In~Ref.~1, we computed the central-peak linewidths by solving generalized laser rate equations, which we derived from the Maxwell--Bloch equations by invoking the fluctuation--dissipation theorem to relate the noise correlations to the steady-state lasing properties; Here, we generalize this approach and obtain the entire laser spectrum, focusing on the RO sidepeaks. Our formulation treats inhomogeneity, cavity openness, nonlinearity, and multimode effects accurately. We find a number of new effects, including new multimode RO sidepeaks and three generalized α\alpha factors. Last, we apply our formulas to compute the noise spectrum of single- and multimode photonic-crystal lasers.Comment: 27 pages, 3 figure

    Enhanced nonlinear frequency conversion and Purcell enhancement at exceptional points

    Full text link
    We derive analytical formulas quantifying radiative emission from subwavelength emitters embedded in triply resonant nonlinear χ(2)\chi^{(2)} cavities supporting exceptional points (EP) made of dark and leaky modes. We show that the up-converted radiation rate in such a system can be greatly enhanced---by up to two orders of magnitude---compared to typical Purcell factors achievable in non-degenerate cavities, for both monochromatic and broadband emitters. We provide a proof-of-concept demonstration by studying an inverse-designed 2D photonic-crystal slab that supports an EP formed out of a Dirac cone at the emission frequency and a phase-matched, leaky-mode resonance at the second harmonic frequency

    Robust mode conversion in NV centers using exceptional points

    Full text link
    We show that microwave-driven NV centers can function as topological mode switches by utilizing a special degeneracy called an exceptional point (EP). By tuning the intensities and frequencies of the driving fields, we find an EP---where two normal modes of the system coalesce---and, then, use it to simulate the dynamics and demonstrate topological and non-reciprocal mode switching. By comparing density matrices of the input and output states, we find that the quantum correlations decrease by three orders of magnitude at room temperature, and discuss ways for improving this result. This work extends the theory of topological mode switches (originally derived for pure states) to mixed states and is, therefore, applicable to general open quantum systems. Our theory enables exploring new phenomena (e.g., high-order EPs in low-dimensional systems) and presents a crucial step towards incorporating topological mode switches in quantum-information applications.Comment: 9 pages, 5 figure

    Radiative heat transfer in nonlinear Kerr media

    Get PDF
    We obtain a fluctuation--dissipation theorem describing thermal electromagnetic fluctuation effects in nonlinear media that we exploit in conjunction with a stochastic Langevin framework to study thermal radiation from Kerr (χ(3)\chi^{(3)}) photonic cavities coupled to external environments at and out of equilibrium. We show that that in addition to thermal broadening due to two-photon absorption,the emissivity of such cavities can exhibit asymmetric,non-Lorentzian lineshapes due to self-phase modulation. When the local temperature of the cavity is larger than that of the external bath, we find that the heat transfer into the bath exceeds the radiation from a corresponding linear black body at the same local temperature. We predict that these temperature-tunable thermal processes can be observed in practical, nanophotonic cavities operating at relatively small temperatures

    Quantitative test of general theories of the intrinsic laser linewidth

    Full text link
    We perform a first-principles calculation of the quantum-limited laser linewidth, testing the predictions of recently developed theories of the laser linewidth based on fluctuations about the known steady-state laser solutions against traditional forms of the Schawlow-Townes linewidth. The numerical study is based on finite-difference time-domain simulations of the semiclassical Maxwell-Bloch lasing equations, augmented with Langevin force terms, and thus includes the effects of dispersion, losses due to the open boundary of the laser cavity, and non-linear coupling between the amplitude and phase fluctuations (α\alpha factor). We find quantitative agreement between the numerical results and the predictions of the noisy steady-state ab initio laser theory (N-SALT), both in the variation of the linewidth with output power, as well as the emergence of side-peaks due to relaxation oscillations.Comment: 24 pages, 10 figure

    Giant frequency-selective near-field energy transfer in active--passive structures

    Get PDF
    We apply a fluctuation electrodynamics framework in combination with semianalytical (dipolar) approximations to study amplified spontaneous energy transfer (ASET) between active and passive bodies. We consider near-field energy transfer between semi-infinite planar media and spherical structures (dimers and lattices) subject to gain, and show that the combination of loss compensation and near-field enhancement (achieved by the proximity, enhanced interactions, and tuning of subwavelength resonances) in these structures can result in orders of magnitude ASET enhancements below the lasing threshold. We examine various possible geometric configurations, including realistic materials, and describe optimal conditions for enhancing ASET, showing that the latter depends sensitively on both geometry and gain, enabling efficient and tunable gain-assisted energy extraction from structured surfaces

    Enhanced Spontaneous Emission at Third-Order Dirac Exceptional Points in Inverse-Designed Photonic Crystals

    Get PDF
    We formulate and exploit a computational inverse-design method based on topology optimization to demonstrate photonic crystal structures supporting complex spectral degeneracies. In particular, we discover photonic crystals exhibiting third-order Dirac points formed by the accidental degeneracy of monopolar, dipolar, and quadrupolar modes. We show that, under suitable conditions, these modes can coalesce and form a third-order exceptional point, leading to strong modifications in the spontaneous emission (SE) of emitters, related to the local density of states. We find that SE can be enhanced by a factor of 8 in passive structures, with larger enhancements ∼√n³ possible at exceptional points of higher order n.United States. Air Force Office of Scientific Research (FA9550-14-1-0389)National Science Foundation (U.S.) (DMR-1454836)National Science Foundation (U.S.) (DGE1144152
    corecore