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We formulate and exploit a computational inverse-design method based on topology optimization to
demonstrate photonic crystal structures supporting complex spectral degeneracies. In particular, we
discover photonic crystals exhibiting third-order Dirac points formed by the accidental degeneracy of
monopolar, dipolar, and quadrupolar modes. We show that, under suitable conditions, these modes can
coalesce and form a third-order exceptional point, leading to strong modifications in the spontaneous
emission (SE) of emitters, related to the local density of states. We find that SE can be enhanced by a factor

of 8 in passive structures, with larger enhancements ∼
ffiffiffiffiffi
n3

p
possible at exceptional points of higher order n.
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Dirac cones in photonic systems have received much
attention because of their connections to intriguing optical
properties, enabling large-area photonic-crystal (PhC) sur-
face-emitting lasers [1], Zitterbewegung of photons [2],
appearance of zero-index behavior [3,4], and as precursors
to nontrivial topological effects [5–7]. Recent work also
showed that Dirac-point degeneracies can give rise to rings
of exceptional points [8]. An exceptional point (EP) is a
singularity in a non-Hermitian system where two or more
eigenvectors and their corresponding complex eigenvalues
coalesce, leading to a nondiagonalizable, defective
Hamiltonian [9,10]. EPs have been studied in various
physical contexts, most notably lasers and atomic as well
as molecular systems [11,12]. In recent decades, interest in
EPs has been reignited in connection with non-Hermitian
parity-time symmetric systems [13], especially optical
media involving carefully designed gain and loss profiles
[14–20], where they can lead to intriguing phenomena such
as excess noise [21,22], chiral modes [23], directional
transport [24,25], and anomalous lasing behavior [26–28].
Also recently, it became possible to directly observe EPs in
photonic crystals (PhCs) [8] and optoelectronic micro-
cavities [29]. Thus far, however, the main focus of these
works has been the effect of second-order exceptional
points (EP2s) realized through photonic radiations, where
only two modes coalesce; apart from a few mathematical
analyses [30–32] or works focused on acoustic systems
[33], there has been little or no investigation into the design
and consequences of EPs of higher order (where more than
two modes collapse).
In this Letter, we formulate and exploit a powerful

inverse-design method, based on topology optimization
(TO), to develop complex photonic crystals supporting
Dirac points formed out of the accidental degeneracy [34]

of modes belonging to different symmetry representations.
We show that such higher-order Dirac points can be
exploited to create third-order exceptional points (EP3s)
along with complex contours of EP2s. Furthermore, we
consider possible enhancements and spectral modifications
in the spontaneous emission (SE) rate of emitters, showing
that the local density of states (LDOS) at an EP3 (14) can
be enhanced eightfold (in passive systems) and can exhibit
a cubic Lorentzian spectrum under special conditions.
More generally, we find enhancement factors ∼

ffiffiffiffiffi
n3

p
with

increasing EP order n. Although the area of photonic
inverse design is not new [35–37], only recently has it
gained traction, with most works [37–41] primarily focused
on improving the performance of conventional devices with
known functionalities. Here, we show that these methods
can be extended and leveraged to realize structures exhib-
iting unusual spectral properties.
Dirac cones are traditionally identified in simple geom-

etries involving cylindrical pillars or holes on a square or
triangular lattice [3,42]. They arise from modal degener-
acies induced by underlying lattice symmetries (e.g., C4v or
C3v) and through fine-tuning of a few geometric parameters
[3,43]. Recently, it was demonstrated [8] that a Dirac cone
at the Γ point of a PhC with C4v symmetry can give rise to a
ring of EP2s. Such a feature is formed by degenerate
monopolar (M) and dipolar (D) modes, which transform
according to A and E representations of the C4v group
[3,43]. Even though the degeneracy consists of one
monopole and two dipoles, the induced EP is of the second
order, with only the monopole and one of the dipoles
colliding, while the coalescence of the dipole partner is
prevented by symmetry [8]. Below, we show that an EP3
can be induced by a completely “accidental” third-order
degeneracy (D3) at the Γ of an inverse-designed PhC
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lacking C4v symmetry, involving modes of monopolar (M),
dipolar (D), and quadrupolar (Q) nature.
Coupled-mode analysis.—The band structure in the

vicinity of such a D3 can be modeled by an approximate
Hamiltonian of the form [42]:

H ¼

0
B@

ω0 vMDkx 0

vMDkx ω0 vQDky
0 vQDky ω0

1
CA ð1Þ

Here, ω0 is the triply degenerate angular frequency and
k ¼ ðkx; kyÞ is the in-plane Bloch wave vector while
vij; i; j ∈ fM;D;Qg characterizes the mode mixing away
from the Γ point, to first order in k [42]. Note that the
diagonalization of this Hamiltonian yields a completely real
band structure comprising a Dirac cone and a flat band,

ω ¼ ω0, ω0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2MDk

2
x þ v2QDk

2
y

q
.

To induce an EP, non-Hermiticity can be introduced by
the addition of a small imaginary perturbation to the
Hamiltonian,

H ¼

0
B@

ω0 þ iγM vMDkx 0

vMDkx ω0 þ iγD vQDky
0 vQDky ω0 þ iγQ

1
CA; ð2Þ

with γ > 0 ð< 0Þ representing a small amount of absorption
(amplification) or radiation. An EP3 is associated with a
third-order algebraic multiplicity in the roots of the
characteristic polynomial PðωÞ of H and thus can be
enforced by vanishing derivatives up to second order,

det ðH − ωIÞ ¼ PðωÞ ¼ 0; ð3Þ
P0ðωÞ ¼ 0; ð4Þ
P00ðωÞ ¼ 0. ð5Þ

Solving the above equations for ω; kx, and ky yields the
EP3:

ωEP3 ¼ ω0 þ
i
3
ðγM þ γD þ γQÞ ð6Þ

kEP3x ¼ � 1

3vMD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγD þ γQ − 2γMÞ3

3ðγQ − γMÞ

s
ð7Þ

kEP3y ¼ � 1

3vQD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2γQ − γM − γDÞ3

3ðγQ − γMÞ

s
ð8Þ

where, any choice of distinct γ leading to real k induces an
EP3. In a lattice with C4v symmetry, this condition cannot
be satisfied, unless the symmetry relating the two dipolar
modes is severely and intentionally broken. Such a design
would necessitate an overlay of spatially varying regions of
gain and loss, a scenario that seems experimentally
challenging. In contrast, we now present a novel design

method that can discover PhC geometries supporting
accidental and tunable D3s.
Inverse-design method.—We construct an accidental D3

by employing a large-scale optimization strategy that can
discover novel topologies and geometries difficult to
conceive through conventional intuition. One such strategy,
known as topology optimization, employs powerful gra-
dient-based numerical algorithms capable of handling a
very large design space, typically considering every pixel
or voxel as a degree of freedom (DOF) in an extensive
computational domain.
Our approach extends the work of Ref. [38], which

showed that it is possible to design a structure supporting a
resonant mode at some arbitrary frequency by maximizing
the time-averaged power output f ¼ −Re½R J� · Edr� emit-
ted from a time harmonic current source J at the desired
frequency ω, where the electric field responseE is given by
the solution of Maxwell’s equations, ∇ × ð1=μÞ∇ ×E −
ω2ϵðrÞE ¼ iωJ [38]. To ensure that the designed resonance
has the requisite modal profile, the current J must be
judiciously constructed. For example, to design a transverse
magnetic (TM) polarized monopolar mode at the Γ point of
a PhC, J should can be chosen as a point dipole J ¼
δðr − r0Þez at the center r0 of the unit cell. Once the
objective function f is identified, its gradient with respec-
tive to ϵðrÞ can be calculated by the so-called adjoint
variable method [37,38] and then supplied to any large-
scale gradient-based optimization algorithm such as the
method of moving asymptotes (MMAs) [44]. To design
structures supporting multiple modes at the same frequency
with the requisite (M,D,Q) symmetries, we seek a maxmin
formulation in which one maximizes the minimum of
ffM; fD; fQg, with currents chosen to ensure fields with
the desired symmetries, discussed in detail in the
Supplemental Material [45].
Our TO framework can be exploited to design high-order

degeneracies with distinct modal properties in arbitrary
material systems and photonic structures. Here, we use it to
demonstrate third-order degeneracies in binary dielectric or
air square lattices. Figure 1 (left) shows three such
structures, involving materials (in air) of refractive indices
f2; 3; 1.82g corresponding to (upper, middle, lower) figures
with periodicities a ¼ f1.05; 0.6; 1gλ, respectively, where λ
is the design wavelength in vacuum. Note that such
refractive indices are typical for common materials such
as silicon nitride, lithium niobate, diamond, silicon, alu-
mina, or ceramics at optical, microwave, and terahertz
frequencies. We focus our discussion on the structure with
index ¼ 2, leaving details of the two other designs to the
Supplemental Material [45]. Noticeably, the band structure
of this lattice exhibits a D3 comprisingM,D, andQmodes
at the Γ point, shown in Fig. 1 (lower right). Note that since
the optimized PhC lacksC4v symmetry (but possessesC2v),
there is only one dipolar mode at the designated frequency
and hence, the degeneracy of the three modes is completely

PRL 117, 107402 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

2 SEPTEMBER 2016

107402-2



accidental: potential mode mixing and avoided crossings at
the Γ point are prevented by the corresponding mirror
symmetries. In the vicinity of the trimodal degeneracy, the
band structure exhibits conical Dirac dispersion accompa-
nied by a quadratic flat band. While general rules regarding
the occurrence of Dirac point dispersion in the vicinity of a
modal degeneracy are well understood from group theoretic
considerations, e.g., as arising from two different

irreducible representations [43], to our knowledge our
TO-designed PhC is the first demonstration of a Dirac
point formed by three degenerate modes belonging to three
different representations, namely, the A1, A2, and B1

representations of the C2v group.
Third-order exceptional point.—The third order Dirac

degeneracy of Fig. 1 can be straightforwardly linked to an
EP3 through the introduction of non-Hermiticity, i.e.,
material loss, gain, or open boundaries (radiation). Here,
we consider such an EP3 by introducing a small imaginary
part in the dielectric constant, κ ¼ ffiffiffiffiffiffiffiffiffiffi

Im½ϵ�p ¼ 0.005,
representing intrinsic material loss and resulting in small
decay rates fγM; γD; γQg=ω0 ≈ f3.6; 4.3; 4.2g × 10−4.
From Eqs. (7), (8), it follows that there exists an EP3
at Re½ωEP3� ≈ ω0, Im½ωEP3� ≈ 4 × 10−4ð2πc=aÞ, kEP3x ≈
7 × 10−5ð2π=aÞ and kEP3y ≈ 1.8 × 10−5ð2π=aÞ [45].
Figures 2(a) and 2(c) show the band structure in the
vicinity of the Γ point, along with slices, Figs. 2(b) and
2(d), indicated by red arrows, illustrating the coalescence of
both the real and imaginary mode frequencies. Yet another
interesting feature of the dispersion landscape is that, apart
from the EP3, there also exists a contour of EP2 (blue
lines), defined by Pðω; kx; kyÞ ¼ 0, P0ðω; kx; kyÞ ¼ 0, sim-
ilar to the ring of EP2 observed in Ref. [8].
A defining signature of non-Hermitian systems is that

eigenvectors are no longer orthogonal. Rather, they are bi-
orthogonal [10] in the sense of an unconjugated “inner
product” between left and right eigenvectors, ðΨL

n ÞTΨR
m ¼

δnm, defined such that AΨR ¼ ω2ΨR and ATΨL ¼ ω2ΨL,
where A is the Maxwell operator ϵ̂−1ð∇þ ikÞ ×
ð1=μÞð∇þ ikÞ× under Bloch boundary conditions at a
specific k, ϵ̂ is the diagonal permittivity tensor ϵðrÞ. At our
EP3, the three eigenmodes coalesce and become self-
orthogonal [16], leading to vanishing inner products

FIG. 1. Inverse-designed 2D square lattices comprising
refractive indices ¼ f2; 3; 1.82g (upper, middle, and lower
schematics) materials in air (white regions), with periodicity
a ¼ f1.05; 0.6; 1gλ. Lower right: Band structure of the lattice
with refractive index ¼ 2 (upper schematic), revealing a Dirac
point induced by the presence of an accidental third-order
degeneracy (D3) of monopolar (M), dipolar (D), and quadrupolar
(Q) modes (upper insets). A schematic of the Brillouin zone (BZ)
denoting high-symmetry k points (Y, Γ, X, M) is also shown.
Because of the lack of C4v symmetry, the dispersions along the X
and Y directions differ.

FIG. 2. (a) Real and (c) imaginary eigenfrequencies as a function of kx and ky in the vicinity of a third order exceptional point (EP3) of
the structure described in Fig. 1, located at kEP3 ≈ f7; 1.8g × 10−5ð2π=aÞ (red dot). The blue contours denote regions of second-order
exceptional points where two of the three modes coalesce. The plots in (b) and (d) show the corresponding band structures along the k
lines marked by red arrows. (e) Contour plot showing the enhanced Petermann factor (PF) associated with one of the modes in the
vicinity of the EP3, and (f) corresponding enhancement along the direction shown by the red arrow, for all three modes.
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ðΨL
n ÞTΨR

n ¼ 0; n ∈ f1; 2; 3g, as characterized by the
so-called Petermann factor (PF),

PFn ¼
jjΨL

n jj2jjΨR
n jj2

jðΨL
n ÞTΨR

n j2
ð9Þ

where jj � � � jj2 is the usual L2 norm given by
jjΨjj2 ¼ ΨT�Ψ. Figures 2(e) and 2(f) illustrate the diver-
gence of the PF for all three modes as k → kEP3. Note that
there are also PF divergences associated with the M, D
modes at the EP2 contours.
Local density of states.—The divergence of the

Petermann factor in open systems can lead to many
important effects [11,51]. In particular, the SE rate of
emitters in resonant cavities is traditionally expressed via
the PF (a generalization of the Purcell factor [51]),
becoming most pronounced near EPs where the latter
diverges [52]. More rigorously, however, the SE rate is
given by the LDOS, or the electromagnetic Green’s
function (GF), which, though enhanced, turns out to be
finite even at EPs [22]: coalescent eigenmodes no longer
form a complete basis, requiring instead an augmented
basis of associated Jordan modes and hence a different
definition of LDOS. Such an expansion was recently
employed in Ref. [22] to demonstrate limits to LDOS at
EP2s in both passive and active media; here, we extend
these results to the case of EP3s.
The LDOS at an EP3 can be obtained from the diagonal

elements of the imaginary part of the dyadic GF [45]:

GEP3 ≈
ΨR

EP3ðΨL
EP3ÞT

ðω2 − ω2
EP3Þ3

þΨR
EP3ðΦL

I ÞT þ ΦR
I ðΨL

EP3ÞT
ðω2 − ω2

EP3Þ2

þΨR
EP3ðΦL

IIÞT þ ΦR
I ðΦL

I ÞT þ ΦR
IIðΨL

EP3ÞT
ω2 − ω2

EP3
: ð10Þ

Equation (10) involves a complicated sum of cubic,
quadratic, and linear Lorentzian profiles weighted by the
outer products of the only surviving left (right) eigenmode

ΨðL;RÞ
EP3 and the two associated Jordan vectors ΦðL;RÞ

ðI;IIÞ ,
determined by the third-order Jordan decomposition of
the Maxwell eigenproblem,

AEP3ΨR
EP3 ¼ ω2

EP3Ψ
R
EP3 ð11Þ

AEP3ΦR
I ¼ ω2

EP3Φ
R
I þΨR

EP3 ð12Þ
AEP3ΦR

II ¼ ω2
EP3Φ

R
II þ ΦR

I ; ð13Þ
and its associated dual. Equation (10) reveals that the
LDOS spectrum ∼ − Im½TrðGÞ� can vary dramatically
depending on position, frequency, and decay rates.
Figure 3(a) shows the LDOS spectra at the center of the

unit cell r0, evaluated at either kEP3 (red curves) or a point
k ¼ f7; 1.8g × 10−2ð2π=aÞ ≫ kEP3 (blue curves) far away
from the EP3, demonstrating an enhancement factor of
≈2.33 in this geometry. Figures 3(c)–3(f) show the corre-
sponding spatial LDOS profiles at and off the EP3,
illustrating the seamless coalescence of the eigenmodes.
Even greater enhancements are possible under different
loss profiles, i.e., γM, γD and γQ, as illustrated by the
following analysis based on the reduced Hamiltonian
framework above. In particular, the GF at a given location
in the unit cell can be directly related to the diagonal entries
of the resolvent of H, defined as G≡ ðH − ωIÞ−1. For
example, the third entry of G yields the LDOS at points
where the intensity of the quadrupole mode dominates.
Consider a scenario in which only the monopole mode has
a finite lifetime, i.e., γM ¼ γ while γD ¼ γQ ¼ 0. It follows
from Eq. (2) and Eq. (10) that the LDOS in this case is
given by,

− ImfGEP3½3; 3�g

≈ −
2γ2

27

γ̄3 − 3γ̄ðRe½ωEP3� − ωÞ2
ðRe½ωEP3� − ωÞ2 þ γ̄2�3

þ γ

3

γ̄2 − ðRe½ωEP3� − ωÞ2
½ðRe½ωEP3� − ωÞ2 þ γ̄2�2 −

γ̄

ðRe½ωEP3� − ωÞ2 þ γ̄2
;

ð14Þ
where γ̄ ≡ γ=3. Moreover, the peak LDOS at ω ¼ Re½ωEP3�
is found to be 8=γ, corresponding to an eightfold enhance-
ment relative to the peak LDOS far away from the EP3.
Such an enhancement is illustrated in Fig. 3(b), which also
reveals the highly non-Lorentzian spectrum associated with
this EP3. We remark that this enhancement in LDOS does

FIG. 3. (a) Local density of states (LDOS) at the center of the unit cell of the structure in Fig. 1, evaluated at either kEP3 ≈
f7; 1.8g × 10−5ð2π=aÞ (red curves) or k ¼ f7; 1.8g × 10−2ð2π=aÞ ≫ kEP3 (blue curves). (b) Maximum (eightfold) LDOS enhance-
ment associated with an EP3, computed via the reduced 3 × 3 Hamiltonian model of (2). (c)–(f) LDOS profiles evaluated at either ωEP3
or at the nondegenerate frequencies ω1, ω2, and ω3, corresponding to the EP3 and far-away points described in (a). Note that the LDOS
is evaluated only in air regions since the LDOS within a lossy medium formally diverges [53].
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not lead to additional dissipation, which is made clear upon
observing that the loss rates (described by the imaginary
parts of the complex eigenfrequencies) remain roughly the
same at and away from the EP. Instead, it arises from the
complex, constructive interference of these modes, as
mediated by the decay channels. Note also that similar
enhancements can also be realized in nondissipative media
so long as there exist decay channels leading to non-
Hermiticity (e.g., radiative or coupling losses).
It is possible to exploit a simple sum rule, namely,

that the spectrally integrated LDOS is a constant [54], to
predict the maximum enhancement possible for an EP of
arbitrary order n. In particular, the integrated LDOS of an
order-n Lorentzian of the form LnðωÞ ¼ ðγ2n−1cn=½ðω −
Re½ωEPn�Þ2 þ γ2�nÞ is SnðωÞ ¼

R
dωLnðωÞ ¼ ðcn

ffiffiffi
π

p
Γ½n−

1
2
�=Γ½n�Þ, where Γ is the gamma function. It follows from
the sum rule that nS1ðωÞ ¼ SnðωÞ and, consequently, that
cn=c1 ¼ ð ffiffiffi

π
p

Γ½nþ 1�=Γ½n − 1
2
�Þ ∼

ffiffiffiffiffi
n3

p
for large n ≫ 1. In

the case of an EP3, the maximum enhancement c3=c1 ¼ 8,
which is realized in the scenario discussed above.
Concluding remarks.—Although fabrication of the

above “bar-code” structures may prove challenging at
visible wavelengths using currently available technologies,
future experimental realizations are entirely feasible in the
midinfrared to microwave regimes, where complex features
can be straightforwardly fabricated in polymers and ceram-
ics with the aid of computerized machining, 3D printing,
laser cutting, additive manufacturing, or two-photon lithog-
raphy [55–57]. In particular, the low-index (refractive
index ¼ 1.82) design (Fig. 1 lower schematic) exhibits
regular and relatively smooth features (the smallest of
which ∼150 nm for operation at mid-IR wavelengths),
making it accessible to standard electron-beam lithography
techniques. Furthermore, while the above predictions offer
a proof of principle, the same inverse-design techniques can
be applied to the design of higher-order EPs as well as other
topologies, including cavities. Our ongoing work in this
regard includes the design of chiral modes, photonic Weyl
points, topological insulators, and omnidirectional Dirac-
cone, zero-index metamaterials.
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