140 research outputs found

    Photon spin-to-orbital angular momentum conversion via an electrically tunable qq-plate

    Get PDF
    Exploiting electro-optic effects in liquid crystals, we achieved real-time control of the retardation of liquid- crystal-based qq-plates through an externally applied voltage. The newly conceived electro-optic qq-plates can be operated as electrically driven converters of photon spin into orbital angular momentum, enabling a variation of the orbital angular momentum probabilities of the output photons over a time scale of milliseconds.Comment: 4 pages, 5 figures, submitte

    Efficient generation and control of different order orbital angular momentum states for communication links

    Get PDF
    We present a novel optical device to encode and decode two bits of information into different Orbital Angular Momentum (OAM) states of a paraxial optical beam. Our device generates the four angular momentum states of order ±2\pm 2 and ±4\pm4 by Spin-To-Orbital angular momentum Conversion (STOC) in a triangular optical loop arrangement. The switching among the four OAM states is obtained by changing the polarization state of the circulating beam by two quarter wave plates and the two-bit information is transferred to the beam OAM exploiting a single qq-plate. The polarization of the exit beam is left free for additional one bit of information. The transmission bandwidth of the device may be as large as several megahertz if electro-optical switches are used to change the beam polarization. This may be particularly useful in communication system based on light OAM.Comment: 5 pages, 5 figures, 1 table. Submitte

    Universal unitary gate for single-photon spinorbit four-dimensional states

    Get PDF
    The recently demonstrated possibility of entangling opposite values of the orbital angular momentum (OAM) of a photon with its spin enables the realization of nontrivial one-photon spinorbit four-dimensional states for quantum information purposes. Hitherto, however, an optical device able to perform arbitrary unitary transformations on such spinorbit photon states has not been proposed yet. In this work we show how to realize such a ``universal unitary gate'' device, based only on existing optical technology, and describe its operation. Besides the quantum information field, the proposed device may find applications wherever an efficient and convenient manipulation of the combined OAM and spin of light is required.Comment: 7 pages, 2 figure

    Polarization-controlled evolution of light transverse modes and associated Pancharatnam geometric phase in orbital angular momentum

    Get PDF
    We present an easy, efficient and fast method to generate arbitrary linear combinations of light orbital angular momentum eigenstates ℓ=±2\ell=\pm 2 starting from a linearly polarized TEM00_{00} laser beam. The method exploits the spin-to-orbital angular momentum conversion capability of a liquid-crystal-based qq-plate and a Dove prism inserted in a Sagnac polarizing interferometer. The nominal generation efficiency is 100\%, being limited only by reflection and scattering losses in the optical components. When closed paths are followed on the polarization Poincar\'{e} sphere of the input beam, the associated Pancharatnam geometric phase is transferred unchanged to the orbital angular momentum state of the output beam.Comment: 5 pages and 5 figure

    Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates

    Full text link
    We present methods for generating and for sorting specific orbital angular momentum (OAM) eigenmodes of a light beam with high efficiency, using a liquid crystal birefringent plate with unit topological charge, known as \qo{q-plate}. The generation efficiency has been optimized by tuning the optical retardation of the q-plate with temperature. The measured OAM m=±2m=\pm2 eigenmodes generation efficiency from an input TEM00_{00} beam was of 97%. Mode sorting of the two input OAM m=±2m=\pm2 eigenmodes was achieved with an efficiency of 81% and an extinction-ratio (or cross-talk) larger than 4.5:1.Comment: 4 pages, 3 Figures and 1 table. Submitte

    Geometric-Phase Waveplates for Free-Form Dark Hollow Beams

    Get PDF
    We demonstrate the possibility of creating optical beams with phase singularities engraved into exotic intensity landscapes imitating the shapes of a large variety of diverse plane curves. To achieve this aim, we have developed a method for directly encoding the geometric properties of a selected curve into a single azimuthal phase factor without passing through indirect encryption methods involving lengthy numerical procedures. The outcome is utilized to mold the optic axis distribution of a liquid-crystal-based inhomogeneous waveplate. The latter is finally used to sculpt the wavefront of an input optical gaussian beam via the Pancharatnam-Berry phase

    Guiding light via geometric phases

    Get PDF
    Known methods for transverse confinement and guidance of light can be grouped into a few basic mechanisms, the most common being metallic reflection, total internal reflection and photonic-bandgap (or Bragg) reflection. All of them essentially rely on changes of the refractive index, that is on scalar properties of light. Recently, processes based on "geometric Berry phases", such as manipulation of polarization states or deflection of spinning-light rays, have attracted considerable interest in the contexts of singular optics and structured light. Here, we disclose a new approach to light waveguiding, using geometric Berry phases and exploiting polarization states and their handling. This can be realized in structured three-dimensional anisotropic media, in which the optic axis lies orthogonal to the propagation direction and is modulated along it and across the transverse plane, so that the refractive index remains constant but a phase distortion can be imposed on a beam. In addition to a complete theoretical analysis with numerical simulations, we present a proof-of-principle experimental demonstration of this effect in a discrete element implementation of a geometric phase waveguide. The mechanism we introduce shows that spin-orbit optical interactions can play an important role in integrated optics and paves the way to an entire new class of photonic systems that exploit the vectorial nature of light.Comment: Publication supported by European Union (EU) within Horizon 2020 - ERC-Advanced Grant PHOSPhOR, grant no. 694683. This is the final peer-reviewed manuscript as accepted for publication (including methods and supplementary information
    • …
    corecore