1,375 research outputs found
Criticality of the "critical state" of granular media: Dilatancy angle in the tetris model
The dilatancy angle describes the propensity of a granular medium to dilate
under an applied shear. Using a simple spin model (the ``tetris'' model) which
accounts for geometrical ``frustration'' effects, we study such a dilatancy
angle as a function of density. An exact mapping can be drawn with a directed
percolation process which proves that there exists a critical density
above which the system expands and below which it contracts under shear. When
applied to packings constructed by a random deposition under gravity, the
dilatancy angle is shown to be strongly anisotropic, and it constitutes an
efficient tool to characterize the texture of the medium.Comment: 7 pages RevTex, 8eps figure, to appear in Phys. Rev.
Additive manufacturing in the maritime industry: Impact on production processes, workers, and end-users
Additive Manufacturing (AM) technologies are revolutionising global production processes, offering substantial benefits to the maritime industry by eliminating the reliance on models and moulds. This shift toward a sustainable, zero-waste future presents significant opportunities and considerations for both workers and end-users.The adoption of automated 3D printing necessitates workforce retraining, with a focus on digital technology skills, reducing the reliance on manual labour. Proactive training programs are vital to equip operators for this evolving landscape. Additionally, studies are exploring occupational health-related aspects of 3D printing, assessing whether it could create a safer working environment compared to traditional manufacturing processes.AM customisation capabilities empower designers and engineers to prioritize human factors, enhancing user experience, comfort, and usability. This approach fosters innovations aligned with the preferences and needs of end-users.This paper aims to explore the impact of AM technologies on manufacturing processes and design freedom within the maritime industry, emphasizing opportunities for improved efficiency, sustainability, and adaptive design practices to meet the sector's dynamic needs
D-Brane Interactions in a Gravitational Shock Wave Background
We study D-branes in the background of a gravitational shock wave. We
consider the case of parallel D-branes located on opposite sides with respect
to the shock wave. Their interaction is studied by evaluating the cylinder
diagram using the boundary states technique. Boundary states are defined at
each D-brane and their scalar product is evaluated after propagation through
the shock wave. Taking the limit where the gravitational shock wave vanishes we
show that the amplitude evaluated is consistent with the flat space-time
result.Comment: To be published in Modern Physics Letters A, revised version with
references added, 12 page
Combining Lightness and Stiffness through Composite-Reinforced Additive Manufacturing in the Yacht Industry: Case Study Analysis and Application on Large Functional Components
This paper explores applications of additive manufacturing (AM) for producing structural components in the yacht industry. Several case studies illustrate how AM is applied to create lightweight composite panels and complex geometries that are challenging to produce with traditional methods. Experimental and simulation studies demonstrate the mechanical performance of AM-produced parts. The key benefits demonstrated include design flexibility and zero-tool manufacturing. The potential roles of AM in addressing industry challenges, such as customisation possibilities and more sustainable production methods, are discussed. The case studies indicate the technical feasibility of 3D printing for functional yacht applications across various scales. Overall, AM shows promise in revolutionising design and manufacturing approaches by enabling optimised structures and on-demand production without traditional manufacturing constraints. This research study highlights the technology's role in evolving yacht design and production practices
The Visible and Near Infrared module of EChO
The Visible and Near Infrared (VNIR) is one of the modules of EChO, the
Exoplanets Characterization Observatory proposed to ESA for an M-class mission.
EChO is aimed to observe planets while transiting by their suns. Then the
instrument had to be designed to assure a high efficiency over the whole
spectral range. In fact, it has to be able to observe stars with an apparent
magnitude Mv= 9-12 and to see contrasts of the order of 10-4 - 10-5 necessary
to reveal the characteristics of the atmospheres of the exoplanets under
investigation. VNIR is a spectrometer in a cross-dispersed configuration,
covering the 0.4-2.5 micron spectral range with a resolving power of about 330
and a field of view of 2 arcsec. It is functionally split into two channels
respectively working in the 0.4-1 and 1.0-2.5 micron spectral ranges. Such a
solution is imposed by the fact the light at short wavelengths has to be shared
with the EChO Fine Guiding System (FGS) devoted to the pointing of the stars
under observation. The spectrometer makes use of a HgCdTe detector of 512 by
512 pixels, 18 micron pitch and working at a temperature of 45K as the entire
VNIR optical bench. The instrument has been interfaced to the telescope optics
by two optical fibers, one per channel, to assure an easier coupling and an
easier colocation of the instrument inside the EChO optical bench.Comment: 26 page
Recurrent Non-Hodgkinâs lymphoma in the uterine cervix: a case report and a review of the literature
Background. Lymphomas are a heterogeneous group of malignant lymphoproliferative diseases. As primary localization, the most common histological subtype of female genital lymphomas is a Non-Hodgkin Lymphoma (NHL), the diffuse large B-cell type. However cervical relapse of NHL is a very rare condition (0.3%). Case presentation. A 42-year-old Peruvian woman experienced relapse of NHL with uterine localization. She complained at first of abnormal vaginal bleeding and stranguria. The cervical biopsy performed showed a diffuse large B-cell lymphoma in the uterine cervix. The lack of clinical studies on this topic and its rarity make this type of recurrence very difficult to treat. Conclusions. In case of a woman with vaginal bleeding and history of NHL, a disease relapse should always be considered, and a biopsy should be performed to confirm the diagnosis. © 2023, EDRA S.p.A. All rights reserved
Recommended from our members
Restriction Spectrum Imaging Differentiates True Tumor Progression From Immune-Mediated Pseudoprogression: Case Report of a Patient With Glioblastoma.
Immunotherapy is increasingly used in the treatment of glioblastoma (GBM), with immune checkpoint therapy gaining in popularity given favorable outcomes achieved for other tumors. However, immune-mediated (IM)-pseudoprogression is common, remains poorly characterized, and renders conventional imaging of little utility when evaluating for treatment response. We present the case of a 64-year-old man with GBM who developed pathologically proven IM-pseudoprogression after initiation of a checkpoint inhibitor, and who subsequently developed true tumor progression at a distant location. Based on both qualitative and quantitative analysis, we demonstrate that an advanced diffusion-weighted imaging (DWI) technique called restriction spectrum imaging (RSI) can differentiate IM-pseudoprogression from true progression even when conventional imaging, including standard DWI/apparent diffusion coefficient (ADC), is not informative. These data complement existing literature supporting the ability of RSI to estimate tumor cellularity, which may help to resolve complex diagnostic challenges such as the identification of IM-pseudoprogression
Impact of IFN lambda 3/4 single nucleotide polymorphisms on the cytomegalovirus reactivation in autologous stem cell transplant patients
Cytomegalovirus (CMV) infection represents one of the main cause mortality after Stem Cell Transplantation. Recently, a protective effect of the T allele of rs12979860 IL28B Single Nucleotide Polymorphisms (SNPs) against CMV infection in the allogenic stem cell transplantation was suggested. We investigate whether the rs12979860 IL28B SNP and the relative rs368234815 (IFNλ4) genotype may affect the incidence of active CMV infection in Autologous stem cell transplantation (Auto-SCT) setting. The study included 99 patients who underwent to Auto-SCT. IL28 and IFNÎ4 SNPs were correlated with CMV reactivation along with other clinical and treatment parameters. CMV reactivation by CMV DNAemia was evaluated once a week until day 100 from Auto-SCT. CMV reactivation was documented in 50% (TT-ÎG/ÎG), 35% (CC-TT/TT) and 29.2% (CT-TT/ÎG) of the patients respectively. No differences in CMV copies number were recorded at reactivation between different IL28/IFNλ4 genotypes. The analysis of patients older than 60 years showed a significantly higher incidence of active CMV infection in the TT-ÎG/ÎG (83%) population with respect to CC-TT/TT (21%) and CT-TT/ÎG (40%) patients. Our data suggest a negative role of TT-ÎG/ÎG genotype in the CMV reactivation in Auto-SCT. The exposure to rituximab and the pre-infusion presence of anti CMV IgG also significantly influenced CMV reactivation
The molecular chaperone Hsp90 is a component of the cap-binding complex and interacts with the translational repressor Cup during Drosophila oogenesis
In metazoa, the spatio-temporal translation of diverse mRNAs is essential to guarantee proper oocyte maturation and early embryogenesis. The eukaryotic translation initiation factor 4E (eIF4E), which binds the 5âČ cap structure of eukaryotic mRNAs, associates with either stimulatory or inhibitory factors to modulate protein synthesis. In order to identify novel factors that might act at the translational level during Drosophila oogenesis, we have undertaken a functional proteomic approach and isolated the product of the Hsp83 gene, the evolutionarily conserved chaperone Hsp90, as a specific component of the cap-binding complex. Here we report that Hsp90 interacts in vitro with the translational repressor Cup. In addition, we show that Hsp83 and cup interact genetically, since lowering Hsp90 activity enhances the oogenesis alterations linked to diverse cup mutant alleles. Hsp90 and Cup co-localize in the cytoplasm of the developing germ-line cells within the germarium, thus suggesting a common function from the earliest stages of oogenesis. Taken together, our data start elucidating the role of Hsp90 during Drosophila female germ-line development and strengthen the idea that Cup has multiple essential functions during egg chamber development
- âŠ