26 research outputs found

    Pluronic® F127 Thermoresponsive Viscum album Hydrogel: Physicochemical Features and Cellular In Vitro Evaluation

    Get PDF
    Viscum album L., popularly known as mistletoe, is well known for its anti-cancer properties, and the pharmaceutical application of hydroalcoholic dry extracts is still limited due to its low solubility in aqueous media, and physicochemical instability. The Pluronic® F127 is an amphiphilic polymer, which permits the solubilization of lipophilic and hydrophilic compounds. In this investigation, physicochemical features of hydrogel containing V. album dry extract (VADE-loaded-hydrogel) were performed by: dynamic light scattering (DLS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). VADE-loaded-hydrogel presented nanometer-size micelles with volume distribution ranging from 10.58 nm to 246.7 nm, and a polydispersity index of 0.441. The sample thermal analyses (TG and DSC) showed similar decomposition curves; however, the thermal events indicated an increase in thermal stability in relation to the presence of the extract. In addition to these interesting pharmaceutical features, IC50 values of 333.40 µg/mL and >1000 µg/mL were obtained when tumor (SCC-25) and non-tumor (L929) cells were incubated with VADE-loaded-hydrogel, respectively. The optical and ultrastructural cellular analysis confirmed the tumor selectivity since the following alterations were detected only in SCC-25 cells: disorganization of plasmatic membrane; an increase of cytoplasmatic vacuole size; alteration in the cristae mitochondrial shape; and generation of amorphous cellular material. These results emphasize the promising antitumoral potential of VADE-loaded-hydrogel as an herbal drug delivery system via in vitro assays

    Quasi-continuous Interpolation Scheme for Pathways between Distant Configurations

    Get PDF
    A quasi-continuous interpolation (QCI) scheme is introduced for characterizing physically realistic initial pathways from which to initiate transition state searches and construct kinetic transition networks. Applications are presented for peptides, proteins, and a morphological transformation in an atomic cluster. The first step in each case involves end point alignment, and we describe the use of a shortest augmenting path algorithm for optimizing permutational isomers. The QCI procedure then employs an interpolating potential, which preserves the covalent bonding framework for the biomolecules and includes repulsive terms between unconstrained atoms. This potential is used to identify an interpolating path by minimizing contributions from a connected set of images, including terms corresponding to minima in the interatomic distances between them. This procedure detects unphysical geometries in the line segments between images. The most difficult cases, where linear interpolation would involve chain crossings, are treated by growing the structure an atom at a time using the interpolating potential. To test the QCI procedure, we carry through a series of benchmark calculations where the initial interpolation is coupled to explicit transition state searches to produce complete pathways between specified local minima.This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/H042660/1]This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in the Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review. To access the final edited and published work see http://dx.doi.org/10.1021/ct300483
    corecore