122 research outputs found

    An analytical model for the mechanical deformation of locally graphitized diamond

    Get PDF
    We propose an analytical model to describe the mechanical deformation of single-crystal diamond following the local sub-superficial graphitization obtained by laser beams or MeV ion microbeam implantation. In this case, a local mass-density variation is generated at specific depths within the irradiated micrometric regions, which in turn leads to swelling effects and the development of corresponding mechanical stresses. Our model describes the constrained expansion of the locally damaged material and correctly predicts the surface deformation, as verified by comparing analytical results with experimental profilometry data and Finite Element simulations. The model can be adopted to easily evaluate the stress and strain fields in locally graphitized diamond in the design of microfabrication processes involving the use of focused ion/laser beams, for example to predict the potential formation of cracks, or to evaluate the influence of stress on the properties of opto mechanical devices.Comment: 29 pages, 7 figure

    Localization landscape theory of disorder in semiconductors. III. Application to carrier transport and recombination in light emitting diodes

    Full text link
    This paper introduces a novel method to account for quantum disorder effects into the classical drift-diffusion model of semiconductor transport through the localization landscape theory. Quantum confinement and quantum tunneling in the disordered system change dramatically the energy barriers acting on the perpendicular transport of heterostructures. In addition they lead to percolative transport through paths of minimal energy in the 2D landscape of disordered energies of multiple 2D quantum wells. This model solves the carrier dynamics with quantum effects self-consistently and provides a computationally much faster solver when compared with the Schr\"odinger equation resolution. The theory also provides a good approximation to the density of states for the disordered system over the full range of energies required to account for transport at room-temperature. The current-voltage characteristics modeled by 3-D simulation of a full nitride-based light-emitting diode (LED) structure with compositional material fluctuations closely match the experimental behavior of high quality blue LEDs. The model allows also a fine analysis of the quantum effects involved in carrier transport through such complex heterostructures. Finally, details of carrier population and recombination in the different quantum wells are given.Comment: 14 pages, 16 figures, 6 table
    • …
    corecore