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Abstract 

We propose an analytical model to describe the mechanical deformation of single-crystal diamond 

following the local sub-superficial graphitization obtained by laser beams or MeV ion microbeam 

implantation. In this case, a local mass-density variation is generated at specific depths within the 

irradiated micrometric regions, which in turn leads to swelling effects and the development of 

corresponding mechanical stresses. Our model describes the constrained expansion of the locally 

damaged material and correctly predicts the surface deformation, as verified by comparing 

analytical results with experimental profilometry data and Finite Element simulations. The model 

can be adopted to easily evaluate the stress and strain fields in locally graphitized diamond in the 

design of microfabrication processes involving the use of focused ion/laser beams, for example to 

predict the potential formation of cracks, or to evaluate the influence of stress on the properties of 

opto-mechanical devices. 

  



4 

 

1. Introduction 

 

A relevant number of works has concentrated in recent years on the application of MeV-ion-

induced graphitization to fabricate and functionalize microstructures and devices in single-crystal 

diamond, including bio-sensors [1], ionizing radiation detectors [2, 3], bolometers [4], 

nano-electromechanical systems (NEMS) [5, 6], photonic structures [7-10] and optical waveguides 

[11, 12]. Laser-induced graphitization has also been employed to fabricate metallo-dielectric 

structures [13] and ionizing radiation detectors [14] in diamond. This versatility is due to the fact 

that both MeV-ion and laser focused beams can locally deliver high power densities in specific 

regions within the diamond bulk with micrometric spatial resolution in all directions, thus creating 

confined regions where the diamond lattice structure is critically damaged. In these regions, 

annealing leads to the graphitization of the damaged structure, whilst the remaining surrounding 

material is largely restored to pristine diamond, so that well-defined structures can be created by 

selectively etching the graphitized regions [3, 5-12] or taking advantage of the optical/electrical 

properties of the graphitized regions [1, 2, 4, 13, 14]. At significantly lower damage densities (i.e. 

well below the graphitization threshold), ion implantation was employed to tailor the optical 

properties of diamond either by modifying its refractive index [15-18] to directly write/fine-tune 

waveguiding structures [19] and photonic structures [20], or to induce spectral shifts in the emission 

of luminescent centres [21]. In all of these cases, accurate knowledge is required of the modification 

of the diamond lattice structure as a function of implantation/irradiation parameters and in-situ/post-

processing annealing conditions, in order to exactly localize the graphitized/modified layer and 

predict its structural effects on the surrounding material. 

As far as ion implantation is concerned, the critical damage level (DC) above which diamond is 

subject to permanent amorphization and subsequent graphitization upon thermal annealing is 

referred to as the “graphitization threshold” [22], and its dependence on implantation parameters 

has been ascertained (e.g. depth and/or local strain, self-annealing, etc.) [23-27]. An observable 
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effect of ion implantation and laser irradiation in diamond is surface swelling, due to the density 

variation in the sub-superficial damaged regions and the corresponding constrained volume 

expansion [28-30]. It is therefore possible to analyze this effect in order to infer the structural 

modifications occurring in ion-implanted diamond and the extent of the density variation. In 

previous studies a phenomenological model accounting for saturation in vacancy density was 

developed, and finite-element (FEM) simulations were performed to compare numerical results 

with experimental surface swelling measurements [31-33]. The use of FEM modelling requires the 

use of specialized software and specific expertise in the field. On the other hand, oversimplified 

mechanical models have often been used to calculate mechanical deformations[28] and strains[34] 

in ion-implanted diamond in the literature, with limited predictive capabilities. In this paper, we 

propose a more rigorous analytical approach to derive material swelling and internal stresses 

following the laser or MeV-ion irradiation of diamond, and validate it by comparing its predictions 

to experimental and numerical data in a number of studies.  

 

2. Analytical model 

 

2.1  2D modelling of graphitic layers within the diamond crystal 

Well-defined graphitic regions can be created in diamond either by MeV ion implantation followed 

by high-temperature annealing or by irradiation with high-power pulsed laser beams. As shown in 

Fig. 1, the irradiation of a crystalline structure with light MeV ions at suitable fluences generally 

results in the formation of a sub-superficial amorphized layer, due to the peculiar depth profile of 

the ionic nuclear energy loss. For a given material, the thickness and depth of the amorphized layer 

primarily depends on the ion species and energy, as well as implantation fluence. It is worth noting 

that the volumetric vacancy density reported in Fig. 1 was estimated by assuming a simple linear 
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dependence from the implantation fluence, i.e. by multiplying the fluence by the linear vacancy 

density per ion , as generated by SRIM-2008.04 Monte Carlo simulations [35] in “Detailed 

calculation” mode and by setting an atomic displacement value of 50 eV [36]. It has been shown 

that such a crude approximation (that neglects non-linear damage effects such as defect-defect 

interaction and self-annealing) does not provide a physically plausible estimation of the vacancy 

concentration [28], nonetheless it is suitable to describe the depth and thickness of graphitized 

layers in samples after high-temperature annealing, provided that the correct empirical 

graphitization threshold is adopted [34]. Moreover, as mentioned in the previous section, the 

diamond layer that has been damaged above the graphitization threshold is assumed to be converted 

to graphite upon high-temperature (i.e. 1200 °C) annealing, whilst the remaining upper layer is 

assumed to have reverted to the pristine diamond phase. The latter assumption is only partially 

justified, since it has been established that even after high-temperature annealing, the crystal 

structure of implanted diamond retains a small degree of residual damage [27], as clearly 

observable in the electrical characterization of the material [2]. However, this effect can reasonably 

be neglected when considering variations in the mechanical properties[26, 37]. 

Although this second strategy is not considered in the present work, it is worth mentioning that 

extended sub-superficial graphitic layers in diamond can be obtained upon high-power pulsed laser 

irradiation [38, 39] through non-equilibrium photo-induced phase transitions induced by fast 

electronic excitations that change their chemical potential [40]. In this case, a post-irradiation 

annealing step generally is not necessary to finalize the conversion to a graphitic phase, and the 

depth and thickness of the buried graphitic layer is directly determined by the extension of the 

region scanned by the focal point of the laser beam within the sample. 
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Figure 1: Depth profile of the vacancy density induced in diamond from 1.8 MeV He
+
 ions 

implanted at a fluence of 2×10
16

 cm
-2

, as derived from the application of a linear fluence 

dependence to the numerical output of SRIM simulations. As an example, three critical damage 

thresholds are plotted (dashed lines) leading to different estimations of the thickness value h of the 

graphitized layer ( black horizontal segments within the damage profile peak). 

 

Regardless of the graphitization strategy, let us consider a diamond sample with a rectangular ion- 

or laser-irradiated area of length l and width w. The cross-sectional geometry of the sample is 

shown in Fig. 2a. The sample is modelled as a two-layer structure: a pristine diamond beam resting 

(with thickness t) on a graphitic elastic foundation (of thickness h), the latter undergoing a 

constrained expansion, due to its decrease in mass density from diamond to graphite. As a first 

approximation, the arbitrarily extended diamond crystal surrounding the lateral sides of the 

graphitic region (the “insert”) is assumed to be infinitely rigid. This prevents lateral expansions, so 

that displacements are purely vertical (i.e. in the z direction, Fig.2b). In order to perform an 
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analytical study of the deformation of the diamond surface layer due to expansion of the underlying 

graphitic region, we employ the equation of a beam on a Winkler foundation, deriving it from the 

elastic beam equation [41], where the diamond and graphitic layers respectively correspond to the 

two above-mentioned components. 

 

Figure 2: a) Schematic representation of a two-dimensional section of the locally graphitized 

diamond region; b) Deformed shape of the implanted region, modelled as an elastic foundation. 

The images are not to scale. 
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The superficial swelling of the diamond beam is thus due to the expansion of the graphitic elastic 

foundation because of its decrease in density. The two regions are assigned different Young's 

moduli (i.e. Ed for diamond and Eg for graphite), and the density decreases from the initial diamond 

value d to the graphite one g. 

The deformation of the top diamond layer is thus calculated using the Euler–Bernoulli elastic beam 

equation [41]:  

 

 
IE

vq

x

v

d 
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4
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
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      (1) 

 

where x is the horizontal coordinate (see Fig. 2a), v  is the layer deformation in the z direction, I = 

wt3
 /12 is the moment of inertia of the layer, and q is the load per unit length applied to the layer.  

Here, we adopt the Euler–Bernoulli formulation instead of Timoshenko beam theory, since

  12  dd twGLIE , where =5/6 and Gd is the diamond shear modulus, which amounts to 

supposing that shear effects are negligible[42]. Thus, the graphitic layer (elastic foundation) exerts a 

load per unit length q along the diamond layer, with:  

 

   0vvkvq g       (2) 

 

where 0v  is the unconstrained elongation of the graphitic foundation in the z direction, and kg is its 

stiffness, which is in turn given by: 
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If we neglect the total mass of the implanted ions (whose contribution can be estimated to 

correspond at most to 1% of the total mass of the region under consideration), the volume variation 

in the implanted layer is primarily determined by its density variation. By considering a purely 

vertical expansion (due to the constraining effect of the surrounding pristine diamond region), we 

obtain, for finite variations: 
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Therefore, we have: 
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Using Eqs. (2) and (5), Eq. (1) becomes: 
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with 
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This 4
th

-order differential equation can be solved for given  and 0v  values, using the theory of 

beams on elastic supports [41] , thus obtaining: 

 

04321 )]sin()cos([)]sin()cos([)( vxcxcexcxcexv xx    

  (8) 

 

where 4

4


   and the coefficients 

1c , 
2c , 3c , 

4c  are calculated by applying the following 

“clamped-clamped” boundary conditions: 
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which imply that i) no deformations occur at the borders of the implanted layer and ii) the 

derivative of the deflection function is zero at the above-mentioned points. The principal stress in 

the z direction in the implanted area )(xz can be calculated from Eqs. (2) and (3), as: 
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while the stress components in the perpendicular directions are: 
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where   is the Poisson’s ratio of diamond. 

 

2.2  2D modelling of non-uniformly damaged layers in diamond 

As-implanted (i.e. not subsequently annealed) samples after MeV ion irradiation represent the ideal 

system to test a scenario in which the diamond structure is subjected to a non-uniform damage 

profile, with regions at different depths being characterized by graded damage densities. Due to the 

characteristic nuclear energy loss profile of MeV ions in matter (see Fig. 1), the implanted layer 

will display a non-uniform depth profile      of the linear vacancy density z, with a typical end-of-

range peak. As mentioned above, the volumetric vacancy density depth profile V can be obtained 

from the SRIM code output [35] in a linear approximation, i.e. by assuming V= F·(z). It is worth 

noting that in the pre-annealing case corrections are needed for high-fluence implantations, in order 
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to account for damage saturation effects. These are discussed extensively in previous works [31-

33]. Following the above-mentioned results, we assume that the mass density profile can be 

calculated as: 

 

)1)((),(

)(
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aCdd ezF
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     (12) 

 

where aC is the amorphous carbon density, F is the implantation fluence and α is an empirical 

parameter depending on the implantation conditions that accounts for the defect recombination 

probability [32, 33]. The mass density variation profile corresponding to a 1.8 MeV He
+
 

implantation at a fluence of 1×10
16 

cm
-2

 was calculated by assuming aC = 2.14 g cm
-3

 [34] and α = 

= 7×10
22

 cm
-3

 [32], as shown in Fig. 3. 

The analytical model described in the previous section can be extended to account for this scenario 

as well. To apply the formalism introduced in Section 2.1, we assume as a first approximation that 

surface deformations due to a density profile such as that in Fig. 2 are equivalent to those induced 

by a buried layer with uniform average density  . For practical purposes, the buried layer is 

defined as a region where a >1% mass density variation is induced with respect to the undamaged 

crystal. The “cap” region between the surface and the buried damaged layer plays the role of the 

“beam” in this case. Then, substituting the average density   in place of g in Eq. (5), the 

formalism presented in Section 2.1 can be extended to model the case of an as-implanted layer.  
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Figure 3: Calculated depth profile of the mass density for a 1.8 MeV He
+
 implantation at a fluence 

of 1×10
16

 cm
-2

, and corresponding average density in the implanted region(   = 3.45 g cm
-3

). 

 

2.3  3D modelling of implanted layer 

The model derived in Sections 2.1 and 2.2 can also be extended to a three-dimensional geometry, 

considering the equation of plates on elastic foundation
 
[41]: 
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where x and y are the coordinates across the plane defined by the sample surface, w is the vertical 

plate deformation, )( 0wwkq   is the load along the z direction and G is the flexural rigidity of 

the plate. For simplicity, we assume independent x and y deformations and look for a solution in the 

form: 

 

)()(),( yvxvyxw 
    (14) 

 

where v is the two-dimensional “beam” deformation. Consequently, we can derive an analytical 

three-dimensional expression for the swelling profile. Due to the simplified nature of Eq. (14), the 

expression is probably unsuitable for calculating edge effects, however it is acceptable as a first 

approximation, as verified in the following Sections.  

 

3. Results 

 

3.1 MeV ion implanted and thermally annealed samples 

In order to validate the model outlined in the previous Section, we compare analytical predictions 

with experimental data and Finite Element Model (FEM) numerical simulations available from 

previous works for He
+
 implantations at various fluences [32, 33]. Ion implantation was performed 

on HPHT (produced by Sumitomo, type Ib, (1 0 0) crystal orientation) samples, 3×3×0.5 mm
3
 in 

size, with two optically polished opposite large faces. The samples were irradiated with 1.8 MeV 

He
+
 ions at the ion microbeam line of the INFN Legnaro National Laboratories. Typically, 

125×125 m
2
 square areas were implanted by raster scanning an ion beam with size of 20-30 m. 

The implantation fluences, ranging from 1×10
16

 cm
-2

 to 2×10
17

 cm
-2

, were controlled in real time by 
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monitoring the X-ray yield from a thin metal layer evaporated on the sample surface. The 

implantations were performed at room temperature, with ion currents of 1 nA. Surface swelling 

data were acquired at the Istituto Nazionale di Ottica (INO) with a Zygo NewView 6000 system, 

which exploits white light interferometry to provide detailed, non-contact measurements of 3-D 

profiles [43]. FEM simulations were carried out using the “Structural mechanics” module in 

COMSOL Multiphysics ver. 4.3 [44]: basically, the local density variation is modelled as a 

constrained volume expansion, similar to a thermal expansion problem, as reported in [31, 32]. 

Material properties for calculations were taken from literature, as done in previous works [21, 33, 

45]:d =1220 GPa, g =14 GPa, = 0.2, ρd = 3.5 g cm
-3

, ρg = 2.1 g cm
-3

. For simplicity, elastic 

properties are supposed homogeneous and identical in all crystal directions.  A decisive parameter 

in this case is the graphitization threshold, DC, which has been found to vary significantly as a 

function of implanted ion species and energy, implantation fluence and temperature, etc.[23-27, 34, 

46-51]. Different DC values imply different thicknesses of the graphitized layer. Figure 1 illustrates 

how an increase of the threshold CD  corresponds to a reduction in thickness h.   

Analytical calculations of surface deformation (taken at the centre of the implanted area) are 

therefore carried out for various CD  values, so as to evaluate the dependence from this parameter 

and identify the value which has closest adherence to the experimental results. Results are shown in 

Fig. 4, with CD  varying between 1.0×10
22

 cm
-3

 and 2.0×10
22

  cm
-3

. From the comparison with 

experimental results, the closest adherence to experimental data is obtained for CD  = 1.5×10
22

  cm
-3

, 

which is compatible with values obtained for the same type of implantations in previous works [32]. 

It is worth noting that both experimental and calculated values display a threshold fluence value 

below which there is no surface swelling, which corresponds to the fluence value for which the 

peak in the vacancy density curve remains below CD , and thus thermal annealing induces the 

reconversion of all damaged carbon to diamond. Taking this value for CD , we now compare the 

analytically calculated values to those obtained with FEM numerical simulations carried out using 
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the same parameters, in order to evaluate the reliability of the model introduced in Section 2. 

Results are also shown in Fig. 4. Analytical values tend to systematically slightly overestimate FEM 

values. This is attributed to the above-mentioned approximation of "rigid" (non-deforming) lateral 

sides, however discrepancies are small (< 11%), thus proving the validity of the analytical approach 

and of the relevant simplifying hypotheses.  

 

 

Figure 4: Experimentally measured (“Exp.”), simulated (“FEM””) and analytical ( “Model”) 

surface swelling vs fluence for 1.8 MeV He
+
 implantations after 1200 °C annealing. The three 

analytical curves are shown for different values of the critical damage threshold: Model1: DC 

=1.0×10
22

 cm
-3

, Model2: DC =1.5×10
22

 cm
-3

, Model3: DC =2.0×10
22

 cm
-3

. FEM results are only 

presented for DC = 1.5×10
22

  cm
-3

. 

 

The reliability of the model can also be assessed by comparing experimental data with analytically 

and numerically calculated values for the surface swelling profile over the whole width of the 
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implanted area for a given fluence value, in this case F=3×10
16

 cm
-2

 (Fig. 5a). Again, discrepancies 

are small (< 6%), but edge effects are slightly different in the three cases, due to the approximation 

of rigid lateral sides and the effect of the Gaussian profile of the employed ion beam.  

Using Eqs. (10) and (11), stresses along the implanted area can also be analytically calculated. As 

reported in Fig. 5b, where the lateral distribution of analytically calculated stresses at the surface is 

shown, stresses are particularly pronounced at the edges of the implanted layer. These are the 

locations of most probable fracture initiation for high implantation fluences, particularly when the 

implantation depth is small. In this respect, the present calculation procedure can provide a simple 

and rapid tool to verify when a chosen graphitization process presents the risk of cracking at the 

graphite-diamond interface. For this purpose, it is possible to adopt one of the several established 

mechanical failure criteria, e.g. the Von Mises yield criterion [52], which can be expressed as a 

function of principal stresses: 

 

      2222
2 Yxzzyyx       (15) 

 

Where Y is the yield stress for the material, which in the case of diamond is approximately 130 

GPa [53]. 
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Figure 5: a) Experimental (“Exp”) and analytically (“Model”) and numerically (“FEM”) 

calculated surface deformation profiles for 1.8 MeV He
+
 implantations (F = 3×10

16
 cm

-2
) after full 

annealing, as a function of the lateral coordinate. Due to the assumption of infinitely rigid lateral 

confinement the analytical prediction gives a higher swelling peak as compared to the FEM 

simulation. b) Corresponding principal stresses in the surface layer, calculated from analytical 

values.  
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3.2 As-implanted samples 

In the case of the as-implanted diamond substrate, experimental and numerical FEM data are also 

available [31, 33] and can be used to check the validity of the proposed approach. In this case, the 

free parameters of the model are  (i.e. the parameter describing the defect recombination 

probability [31]), and t (i.e. the approximate thickness of the “cap” layer in which the effect of ion-

induced damage is negligible). Another relevant parameter in the calculation is the limiting density 

of the ion-damaged material, i.e. aC =2.14 g cm
-3

, as determined in [34]. Again, a parametric study 

was carried out to determine the values of the parameters tand yielding the best adherence to 

experimental data. The values t = 1.5 µm and  = 7×10
22

 cm
-3

 were obtained, in good agreement 

with previous studies [32]. Results are shown in Fig. 6a, where the surface swelling at the center of 

the implanted area is reported as a function of the implantation fluence. As for annealed samples, 

analytical results are compared to experimental data and FEM numerical results. As previously, 

analytical values tend to slightly overestimate FEM values, but the agreement is satisfactory, and 

discrepancies with experimental data remain below 10% for medium/low fluence values. At high 

fluences, the agreement between experimental and analytical/numerical datasets is worse than in the 

case of annealed samples. This is attributed to the additional approximation of using an average 

equivalent density for the implanted layer (see Section 2.2). Also, as for annealed samples, the 

analytical expression of the swelling profile along the lateral direction is used in Fig. 6b for a 

comparison with FEM simulations for a F=3×10
16

 cm
-2

 fluence. Again, analytical predictions 

slightly overestimate the FEM values, consistently with the assumption of infinitely stiff lateral 

confinement, leading to a more pronounced vertical deformation of the surface. 
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Figure 6:a) Experimental, analytical and numerical swelling values for 1.8 MeV He
+
 implantations 

in as-implanted samples as a function of implantation fluence. b) Corresponding deformation 

profiles for a fluence of F=3×10
16

 cm
-2

. 

 

3.3 3-D deformation profiles 
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Figure 7 reports a comparison between the results of three-dimensional analytical modelling and 

experimental measurement of the surface deformation resulting from a 1.8 MeV He
+
 implanted 

2250250 m area at a fluence F = 2×10
16

 cm
-2

 and after thermal annealing.
 
The overall agreement 

is good, although edge effects are clearly not adequately accounted for in the analytical model. The 

decrease to zero swelling values at the edges of the implanted area is found experimentally to be 

much more gradual than predicted using the model, as for 2D modelling results. This could also be 

due to the Gaussian-like decay in intensity of the ion microbeam at the edges of the implanted 

region, and possibly to ion-straggling effects through the depth. Overall, we can conclude that 

analytical predictions are generally reliable away from the edges of the implanted regions. In the 

proximity of the edges, more sophisticated modeling would be required to correctly draw definite 

conclusions, however the values predicted with the present model can provide an upper bound for 

stress calculations and failure predictions in this region.  
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Figure 7: a) Experimentally measured, b) analytically-calculated and c) FEM calculated 3-D 

swelling profiles relative to a 250×250 µm
2
 area implanted with 1.8  MeV He

+
 ions at fluence F = 

2×10
16

 cm
-2

 after 1200 °C thermal annealing. Colour scale is the same for the three images. For 

the FEM profile, due to symmetry, only one quarter of the sample is shown. 
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4. Conclusions 

An analytical model was developed to predict the surface deformation and internal stresses in 

single-crystal diamond samples which have undergone MeV ion implantation. The predictions of 

the two-dimensional analytical model have been compared with experimental and numerical FEM 

data available from literature for 1.8 MeV He
+
 implantations at various fluences, both for as-

implanted and 1200 C annealed samples. The free parameters of the model have been optimized in 

order to maximize the adherence with experimental data, and have been found to be consistent with 

previous studies. Analytical results generally display good agreement with experiments and FEM 

simulations, in particular for the post-annealing case where the mass density profile is constituted of 

two distinct and homogeneous layers, i.e. a diamond “beam” resting on a graphitized “foundation”. 

The systematic slight overestimation of the model with respect to the numerical calculations could 

be corrected by eliminating the assumption of infinitely stiff lateral confinement, although this 

would significantly complicate the mathematical derivation. The model was also extended to three 

dimensions using plate theory, allowing a direct comparison of the analytical swelling surface with 

experimental data. In future, the model can be extended to account for intermediate thermal 

treatments below the temperature of full graphitization, so as to allow the comparison with a wider 

range of experimental data. Since best fitting parameters have also been derived in the present work 

for He MeV implantations, the model can now be used as a predictive tool in the design of ion-

beam/laser microfabrication procedures in diamond based on damage-induced graphitization, 

particularly by predicting undesired mechanical effects such as cracks, as well as other mechanical 

effects on the optical properties of the material (refractive index, spectral shifts in the emission from 

luminescent centers, birefringence, etc.). 
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