425 research outputs found

    The one-way CNOT simulation

    Get PDF
    In this paper we present the complete simulation of the quantum logic CNOT gate in the one-way model, that consists entirely of one-qubit measurements on a particular class of entangled states.Comment: 7 pages, 2 figure

    Theory of high-order harmonic generation from molecules by intense laser pulses

    Full text link
    We show that high-order harmonics generated from molecules by intense laser pulses can be expressed as the product of a returning electron wave packet and the photo-recombination cross section (PRCS) where the electron wave packet can be obtained from simple strong-field approximation (SFA) or from a companion atomic target. Using these wave packets but replacing the PRCS obtained from SFA or from the atomic target by the accurate PRCS from molecules, the resulting HHG spectra are shown to agree well with the benchmark results from direct numerical solution of the time-dependent Schr\"odinger equation, for the case of H2+_2^+ in laser fields. The result illustrates that these powerful theoretical tools can be used for obtaining high-order harmonic spectra from molecules. More importantly, the results imply that the PRCS extracted from laser-induced HHG spectra can be used for time-resolved dynamic chemical imaging of transient molecules with temporal resolutions down to a few femtoseconds.Comment: 10 pages, 5 figure

    A determination of the average up-down, strange and charm quark masses from Nf=2+1+1N_f=2+1+1

    Get PDF
    We present a lattice QCD determination of the average up-down, strange and charm quark masses based on simulations performed by the European Twisted Mass Collaboration with Nf=2+1+1N_f = 2 + 1 + 1 dynamical fermions. We simulated at three different values of the lattice spacing, the smallest being approximately 0.06fm0.06fm, and with pion masses as small as 210MeV210 \text{MeV}. Our results are: mud(2GeV)=3.70(17)MeVm_{ud}(2\text{GeV})=3.70(17)\text{MeV}, ms(2GeV)=99.2(3.9)MeVm_s(2\text{GeV})=99.2(3.9)\text{MeV}, mc(mc)=1.350(49)GeVm_c(m_c)=1.350(49)\text{GeV}, ms/mud=26.64(30)m_s/m_{ud}=26.64(30) and mc/ms=11.65(12)m_c/m_s=11.65(12)

    Mass of the b-quark and B-decay constants from Nf=2+1+1 twisted-mass Lattice QCD

    Get PDF
    We present precise lattice computations for the b-quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B-decay constants. We employ gauge configurations with four dynamical quark flavors, up/down, strange and charm, at three values of the lattice spacing (a ~ 0.06 - 0.09 fm) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated to the physical pion mass and to the continuum limit and read: mb(MSbar, mb) = 4.26(10) GeV, mb/mc = 4.42(8), mb/ms = 51.4(1.4), fBs = 229(5) MeV, fB = 193(6) MeV, fBs/fB = 1.184(25) and (fBs/fB)/(fK/fpi) = 0.997(17).Comment: Version to appear in PRD. Added comments to simulation setup and error budget discussion. 1+20 pages, 9 figure

    Leptonic decay constants fK, fD and fDs with Nf = 2+1+1 twisted-mass lattice QCD

    Full text link
    We present a lattice QCD calculation of the pseudoscalar decay constants fK, fD and fDs performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their values in the real world. The simulations are based on a unitary setup for the two light mass-degenerate quarks and on a mixed action approach for the strange and charm quarks. We use data simulated at three different values of the lattice spacing in the range 0.06 - 0.09 fm and at pion masses in the range 210 - 450 MeV. Our main results are: fK+ / fpi+ = 1.184 (16), fK+ = 154.4 (2.0) MeV, which incorporate the leading strong isospin breaking correction due to the up- and down-quark mass difference, and fK = 155.0 (1.9) MeV, fD = 207.4 (3.8) MeV, fDs = 247.2 (4.1) MeV, fDs / fD = 1.192 (22) and (fDs / fD) / (fK / fpi) = 1.003 (14) obtained in the isospin symmetric limit of QCD. Combined with the experimental measurements of the leptonic decay rates of kaon, pion, D- and Ds-mesons our results lead to the following determination of the CKM matrix elements: |Vus| = 0.2269 (29), |Vcd| = 0.2221 (67) and |Vcs| = 1.014 (24). Using the latest value of |Vud| from superallowed nuclear beta decays the unitarity of the first row of the CKM matrix is fulfilled at the permille level.Comment: 20 pp., 4 figures; revised version to appear in PRD; improved calculation of IB effects for fK+; minor changes in the final values. arXiv admin note: text overlap with arXiv:1403.450

    B-physics computations from Nf=2 tmQCD

    Get PDF
    We present an accurate lattice QCD computation of the b-quark mass, the B and Bs decay constants, the B-mixing bag-parameters for the full four-fermion operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated to the continuum limit and the physical pion mass. We have used Nf = 2 dynamical quark gauge configurations at four values of the lattice spacing generated by ETMC. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out using ratios of physical quantities computed at nearby quark masses, having an exactly known infinite mass limit.Comment: 7 pages, 4 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German

    Persistent storage of non-event data in the CMS databases

    Get PDF
    In the CMS experiment, the non event data needed to set up the detector, or being produced by it, and needed to calibrate the physical responses of the detector itself are stored in ORACLE databases. The large amount of data to be stored, the number of clients involved and the performance requirements make the database system an essential service for the experiment to run. This note describes the CMS condition database architecture, the data-flow and PopCon, the tool built in order to populate the offline databases. Finally, the first results obtained during the 2008 and 2009 cosmic data taking are presented.In the CMS experiment, the non event data needed to set up the detector, or being produced by it, and needed to calibrate the physical responses of the detector itself are stored in ORACLE databases. The large amount of data to be stored, the number of clients involved and the performance requirements make the database system an essential service for the experiment to run. This note describes the CMS condition database architecture, the data-flow and PopCon, the tool built in order to populate the offline databases. Finally, the first experience obtained during the 2008 and 2009 cosmic data taking are presented
    • …
    corecore