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ABSTRACT: In the CMS experiment, the non event data needed to set up the detector, or being
produced by it, and needed to calibrate the physical responses of the detector itself are stored in
ORACLE databases. The large amount of data to be stored, the number of clients involved and
the performance requirements make the database system an essential service for the experiment to
run. This note describes the CMS condition database architecture, the data-flow and PopCon, the
tool built in order to populate the offline databases. Finally, the first experience obtained during the
2008 and 2009 cosmic data taking are presented.
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1 Introduction

The large amount of data needed to set up the detector (tens of GBytes) and produced by it (few TBs
per year) makes the database system a service which is essential for CMS data-taking operation.
During the construction phase, many databases, based on different technologies and software, were
developed by the sub-projects in order to store all the detector and equipment data. In 2004, the
CMS collaboration decided to start a common and central project, called the CMS Database Project,
in order to converge towards an unique database technology and a set of central software tools
supported by the experiment for all data taking.

The current layout of the database model and data-flow was developed after two workshops
and one review and close interaction with the CMS subsystems.

The two most important requirements identified by CMS are:

• CMS has to be able to operate without network connection between LHC Point 5 (P5) and
the outside world (CERN network included). Therefore CMS must own an independent
database structure based at P5.

• The offline condition data work-flow has to fit a multi-tier distributed structure as used for
event data.
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The Database Project group, with the help of IT and in collaboration with all the CMS sub-projects,
designed a system based on 3 different databases, all based on the ORACLE technology (a com-
mercial relational database system [1]).

• Online Master Database System (OMDS) is the online master database located at P5 on
the CMS online network. It stores the configuration of the detector and the non event data
(condition data) produced by the sub-systems like slow control, electronics, data acquisition
(DAQ) and trigger data. It is a purely relational database.

• Offline Reconstruction Condition database for ONline use (ORCON), on the online net-
work, stores all the offline condition data required online by the High Level Trigger (HLT)
and offline for the event data reconstruction. It also contains conditions needed offline for
data quality indication and for more detailed offline analysis. ORCON serves only as an in-
termediate storage of the latest offline condition data. The entire history of off line condition
data is stored in ORCOFF. The data contained in it are written using the POOL-ORA [2]
technology and are retrieved by the HLT programs as C++ objects.

• Offline Reconstruction Condition database for OFFline use (ORCOFF) is the master offline
database located at the Tier-0 site (CERN Meyrin) and it contains a copy of ORCON made
through ORACLE streaming. ORCOFF contains the entire history of all CMS condition data
and serves prompt reconstruction as well as the condition deployment service to Tier-1/Tier-
2 sides as input source. Data contained in it are retrieved by the reconstruction algorithms as
C++ objects.

2 Non-event data description

For each sub-detector, the non-event data to be stored in the CMS databases can be classified in
different groups, according to their needs for meta-data (i.e., data to describe the data):

• Construction data During the construction of the detector, data are gathered from both the
production process and the produced items. Some of the construction data also belongs to
the data types described below, and therefore were moved to the common data storage at the
end of construction. The different CMS sub-detectors agreed to keep their construction data
available for the lifetime of the experiment in order to be able to trace back production errors.
The construction data and their storage will not be described in this document.

• Equipment management data Detector items should be track- ed in order to log their his-
tory of placements and repairs. The classification of CERN as INB (Installation Nucleaire
de Base [3]) requires, in addition, to keep a continuous trace of the location of irradiated
items. Equipment management data contain, therefore, the location history of all items be-
ing installed at the experiment, in particular detector parts as well as off detector electronics.
Hence, the required meta-data must be time validity information. This data are stored in
OMDS.

• Configuration data The data needed to bring the detector into any running mode are clas-
sified as configuration data. They comprise voltage settings of power supplies as well as
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programmable parameters for front-end electronics. Configuration data require a version
and time validity information as meta-data. This data are stored in OMDS.

• Condition data The data describing the state of any detector subsystem are defined as con-
dition data. These conditions are measured online and are stored in OMDS. They include
data quality indicators such as bad channel lists and settings of the detectors needed offline
(such as pedestals). Condition data in OMDS are used in the online system for post mortem
analysis of detector errors. Condition data needed for HLT and offline reconstruction are
uploaded in ORCON, and must be described by a version and the time validity information
corresponding to the set of data for which they are measured.

• Calibration data The data describing the calibration and the alignment of the individual
components of the different sub-dete- ctors are labeled as calibration data. These quantities
(such as drift velocities, alignments constants, etc.) are evaluated by running dedicated algo-
rithms offline. Since they are needed by HLT and for offline reconstruction, they appear only
in the offline databases (ORCON and ORCOFF). Calibrations must match the corresponding
raw data coming from the collision events revealed by the detector. Calibration data can be
grouped by the version and the time range in which they are valid.

3 The database architecture

Different data usage and access between online and offline determines the overall database archi-
tecture for the CMS experiment. In the online network, data are mainly written into the database,
so that the time for a database transaction to be committed is critical, while, in the offline network,
data are mainly read from the databases. Moreover, the online data are being written at random
times, while the offline data must be synchronized with the events. Since online data are used for
error tracking, different data items must be accessible in order to be compared between each other;
on the other hand, offline data must be grouped before they are read, so that they can be decoded
according to predefined rules.

The general non-event data flow can be described as follows (see figure 1): every subproject
calculates and measures in advance all the parameters needed to setup its hardware devices, mainly
related to the detector, DAQ and trigger. Hence, configuration data are prepared using the equip-
ment management information, for both hardware and software. Different hardware setups can be
stored at the same time in the configuration database, but only one will be loaded before the run
starts. During data taking, the detector produces many kind of conditions, to be stored in OMDS,
from the slow control (PVSS [4]) and from other tools like DAQ (XDAQ), Run Control and data
quality monitoring (DQM). Part of OMDS data, needed by the HLT and offline reconstruction, will
be transferred to ORCON. A software application named PopCon (Populator of Condition Objects)
operates the online to offline condition data transfer (the so-called O2O procedure), and encapsu-
lates the data stored in relational databases as POOL-ORA objects. PopCon adds meta-data infor-
mation to non-event data, so that they can be retrieved by both the HLT and the offline software.

In addition to condition data transferred from OMDS to ORCON by the O2O procedure,
calibration and alignment data determined offline are also written to ORCON, using again Pop-
Con. Finally, data are transferred to ORCOFF, which is the main condition database for the CMS
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Figure 1. Condition databases architecture.

Tier-0, using ORACLE streaming. For massively parallel read-access, the ORCON and ORCOFF
databases are interfaced with a cache system referred to as Frontier, which in case of ORCOFF is
the mechanism used to distribute conditions data to the Tier-1 and Tier-2 centres outside CERN.
Caching servers (squids) are used to cache requested objects to avoid repeated access to the same
data, significantly improving the performance and greatly reducing the load on the central database
servers. Further details can be found in [5].

As data taking proceeds, we can understand better and better how the detector works; therefore,
this will require a new version of calibrations. When it will be available, it will be uploaded into
ORCON using PopCon, and then streamed offline to ORCOFF.

3.1 The online master database

In the CMS experiment, the non event data needed to set up the detector, or being produced by
the detector itself, is stored in OMDS. The online database must allow for accessing individual,
ideally self explaining data items: hence a pure ORACLE access and manipulation structure has
been chosen for OMDS.

The data size is expected to become very large (several TBs), and, since condition data will
constantly flow into the database, the time needed to store these data in OMDS is a critical issue.
To fulfill these requirements, each sub-detector has designed its own database schema, reflecting
as far as possible the detector structure.

The total amount of data stored in OMDS is about 1.5 TB in 100 days of data taking. This rate
was extrapolated from the 2008 and 2009 cosmic runs: in particular, in the account on OMDS for
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non-event data coming from the electromagnetic calorimeter (ECAL), about 5 GB of data per day
are stored.

3.2 Offline database

As shown in figure 1, the CMS database infrastructure envisages two offline databases intended for
condition data:

• ORCON is a part of the database infrastructure at P5. It contains CMS condition and calibra-
tion data and serves as an input source to the HLT. It is also an intermediate storage element
of the latest condition objects.

• ORCOFF is the offline master database for condition data. It is located at the Tier-0 (CERN
Meyrin). It contains a copy of the data in ORCON, and the entire history of all CMS non-
event data. It serves as an input source for all offline reconstruction. The data in ORCOFF
are accessed from the Tier-0, and from all Tier-1 and Tier-2 centres via the Frontier caching
mechanism.

ORCON possess identical “schemas” as ORCOFF, optimized for the offline usage.
Together with the production databases, CMS users can also use a “development” and an

“integration” database, intended for tests, and accessible from the offline network:

• ORCOFF PREP, offline database for preparation and development purposes.

• ORCOFF INT, offline database for integration. It should be used if all the tests on OR-
COFF PREP have been successful.

Since the 2009 cosmic data taking (namely, CRAFT2009), CMS deployed a “development”
and an “integration” database also in the online network:

• cmsdevr, offline database in the online network for preparation and development purposes.

• cmsintr, offline database in the online network for integration. It should be used if all the
tests on cmsdevr have been successful.

The data access (both insertion and retrieval) is controlled only by the C++ based POOL-ORA
API (see 3.3). In the offline databases, only a subset of configuration data and condition data, as
well as all calibration data, must be stored. All these data need a tag, labeling their version, and
an interval of validity for describing their time information, as meta-data. The interval of validity
(IOV [6]) is the contiguous (in time) set of events for which non-event data are to be used in
reconstruction. According to the use-case, the IOV will be defined in terms either of GPS-time
(mainly for condition data) or “run-number” range (usually for calibrations). Whilst the IOV for
some electronic related conditions (e.g. pedestals and noises) is identical to the time interval in
which these data were used in the online operations, some calibration data may possess an IOV
different from the time range in which they were defined. For this reason, the IOV assignment for
a given set of condition data is carried out at the offline level. Each payload object, i.e. each data
stored as a POOL-ORA object in ORCOFF, is indexed by its IOV and a tag, a label describing the
calibration version, while the data themselves do not contain any time validity information.
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The matching with the raw data from the collision events is indeed possible via these meta-
data: the reconstruction algorithms for the analysis of a given run query the offline condition data
corresponding to the same run grouped through a set of tags, called global tag [6].

The policy established by the Database Project for the CMS community is to write any condi-
tion/calibration data in ORCON; the data are then copied to ORCOFF using the ORACLE stream-
ing tool.

The size of condition data stored in ORCON and ORCOFF, where only a subset of condition
data will be uploaded, is decreased by a factor of 20 with respect to OMDS. This is a great success
of the entire architecture.

In section 3.4 the PopCon framework is described, while in section 4.2 more information about
the online-to-offline (O2O) transfer operated by PopCon is given.

3.3 POOL object relational database access: POOL-ORA

POOL [7], the persistency framework for object storage for the LHC experiments, was successfully
used by ATLAS, CMS and LHCb to handle data during data challenges. The relational back-end
of POOL, namely POOL-ORA, is chosen by the CMS experiment for condition data handling.
The implementation sits on top of a generic relational database layer. The POOL-ORA interface
used for handling non-event data is identical to that of POOL-ROOT used for handling event data.
The main feature is that the transient object model drives the database model: the designers of
the offline data model do not need to know the tabular representation of the data in the database.
The offline database schema is automatically created from the definitions of the persistent-capable
objects, by following the Object Relational Mapping (ORM) rules. The data are retrieved from
the underlying relational database, then materialized as C++ objects in memory by following the
dictionary information, hence finding the corresponding entries in the ORM files.

As shown in figure 2, PoolORA consists of three domains:

• COmmon Relational Access Layer (CORAL) defines a vendor independent API for rela-
tional database access, data and schema manipulation. Three technology plugins, for ORA-
CLE, MySQL and SQLite technologies, are released together with the API.

• Object Relational Access (ORA) implements the object relational mapping mechanism,
and is responsible for transforming C++ object definitions into relational structures and vice-
versa.

• Relational Storage Service implements the POOL Storage Service using the relational Ac-
cess and the Object Relational Access components.

CMS contributes to the development of the POOL-ORA infrastructure in order to ensure that
it satisfies the requirements from the CMS community.

3.4 PopCon

PopCon [8] is a mini-framework within the CMS software CMSSW [9] that transfers the condition
objects from a user-defined data source to the offline databases.

Popcon is based on the cmsRun infrastructure of the CMS software framework [10]. It is
possible to use different data sources such as databases, ROOT files, ASCII files, and so on. A C++
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Figure 2. POOL-ORA in the overall architecture.

object type (built in type, structure, class, template class) which contains the non event data, must
be defined into the CMS software framework. For each condition object (payload) class a PopCon
application is created.

The core framework consists of three classes (two of them are C++ templates), as can be seen
in figure 3:

• PopCon

• PopConSourceHandler

• PopConAnalyzer

Once the C++ condition object is embedded into CMSSW, the “detector user” provides the
code which handles the data source and specifies the destination for the data, writing a derived class
of PopConSourceHandler, where all the online (source handling) code goes. The user instantiates
the objects, provides the IOV information for such objects and configures the database output
module. The PopCon configuration file associates the tag name defined according to some specific
rules, to the condition object. Once the object is built, the PopCon application writes the data to
the specified account in the offline database. Sub-detector code does not access the target output
database: it only passes the objects to the output module.

The analyzer object holds the source handling object. It also serves to implement some addi-
tional functionality such as:

• Locking mechanism.

• Transfer logging.

• Payload verification (IOV sequence).
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PopCon 

+ write(Source ) 
+ writeOne(T*, Summary *, Time_t) 
‐   Ini9alize() 
‐  finalize() 

PopConAnalyzer 

‐ beginJob() 
‐ endJob() 

Class T 

PopConSourceHandler 

+ getNewObjects() 
+ id() 

Class T1 

PoolDBOutputService 

+ 

<<include>> 

<<i
ncl

ude
>> 

EDAnalyzer 

+ 

CondObjSourceHandler 

+ m_to_transfer 

+ getNewObjects() 
+ id() 

+ m_to_transfer 

CondObject 

+ 

Figure 3. Schema of the classes for the PopCon package.

• Application state management.

• Database output service.

The writer in PopCon iterates over the container of user objects and stores it in the user-configured
data destination.

Any transaction towards ORCON is logged by PopCon, and the process information is sent
to a database account as well. A monitoring tool for this information was developed, in order to
check the correctness of the various transactions, and to keep trace of every upload for condition
data, see section 4.3.

4 First experience in operating the population on the condition databases in 2008
and 2009

In the 2008 and 2009 global runs (with and without the magnetic field), the great majority of
the condition data was transferred offline using a PopCon application. Great effort was devoted
by the CMS database project team to the integration of all the software and to the infrastructural
chain used to upload the calibration constants into the CMS condition databases. Many tools were
provided to help the sub-detector responsible people to populate their database accounts. A central
procedure, based on an automatic up-loader into ORCON on a dedicated machine in the online
network, was successfully deployed during 2008, and became the recommended way to populate
ORCON during 2009 data taking.

4.1 Condition objects written using PopCon in 2008

As stated before, each piece of condition data (pedestals, Lorentz angles, drift time, etc.) cor-
responds to a C++ object (“CondObjects”) in the CMS software. Each object is associated with
a PopCon application which writes the payload into ORCON. Table 1 lists all the CondObjects
used in 2008, grouped according to the subsystem they belong to. For each object the type, the
approximate data size in ORCON and the upload frequency are also reported.
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Table 1. 2008 CMS condition objects list.

Subsystem Name Type Data size Frequency

Pixel
FedCablingMap online configuration 1K once (before the run )
LorentzAngle offline calibration 1MB each run (if different)

CalibConfiguration online calibrations 5KB each calibration run

Tracker

FedCabling online configuration 1K once
BadStrip online condition 1MB each run (if different)
Threshold offline calibration 1MB each run (if different)
Pedestals offline calibration 1MB each run (if different)

Noise offline calibration 1MB each run (if different)

Ecal
Pedestals online calibration 2MB daily

LaserAPDPNRatios online calibration 2MB hourly

Hcal

ElectronicsMap online configurations 1MB once (before the run)
Gains offline calibrations 1MB each run

Pedestals offline calibrations 1MB each run
PedestalsWidths offline calibrations 1MB each run

QIEData online calibrations 1MB each run

CSC

ChamberMap online configuration 10KB monthly
CrateMap online configuration 10KB monthly
DDUMap online configuration 10KB monthly

ChamberIndex online configuration 10KB monthly
Gains offline calibrations 2MB each run

NoiseMatrix offline calibrations 2MB each run
Pedestals offline calibrations 2MB each run

DT

ReadOut online configuration 10MB once
CCBConfig online configuration 100KB once (before the run)

T0 offline calibration 10MB rare
TTrig offline calibration 1MB at trigger change

MTime offline calibration 1MB daily

RPC
EMap online configuration 10MB once

L1Config online configuration 10MB once
Cond online conditions 10MB daily

DAQ RunSummary run conditions 10KB run start/end

4.2 Central population of the condition data-bases

A central procedure was set up in 2008, and used since then, for populating the CMS condition
databases: it exploits a central account, explicitly devoted to the deployment of tools and services
for the condition databases, in the CMS online network. On that account, a set of automatic jobs
was centrally set up for any single sub-detector user, in order to both populate ORCON and monitor
any transactions to it.
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EcalO2O 
DT020 
……… 

PixelExport 
TrackerExport 

………. 

Watchdog 

PopCon pc 

Pixel pc 

Tracker pc 

ECAL@OMDS 

DT@OMDS 

log 

PixelLorentzAngles 
ECAL@ORCON 

PIXEL@ORCON 

 POPCONLOG@ORCON 

PopCon  monitor 

……… 

……… 

Figure 4. Schematic illustration of the central system used to populate ORCON, and of the web monitoring
system.

Two possibilities are given to users:

1. to run automatically the application that reads from any online source, assigns tag and inter-
val of validity, and uploads the constants into ORCON (mainly for condition data). The time
interval of the automatic jobs is negotiated with the users;

2. to use the account as a drop-box: users copy the calibrations in the SQLite [11] format into
a dedicated folder for each sub-detector, and then these data are automatically exported in
ORCON (mainly for offline calibration data).

Figure 4 shows a sketch of the central system used to populate the condition database. Each
sub-detector responsible person may transfer the payload onto the central PopCon PC, that then
automatically manages the exportation into the ORCON database (using a specific set of Subde-
tector Export scripts). Other automatic scripts (e.g. ECALO2O, DTO2O. . . ) check to see if new
conditions have appeared in the online table, and, if so, perform the data transfer from OMDS
to ORCON. The PopCon applications transfer each payload into the corresponding account, and
create some log information which are subsequently stored in the PopConLog account on ORCON
itself.

Each automatic job is associated with a “watchdog” tool that monitors its status. The job
monitoring information are also logged into the PopConLog account on ORCON.

Since 2009 data taking a drop-box in the offline network has recently also been deployed. This
infrastructure, using web applications inside Virtual Machine technology, and the Python program-
ming language performs an automatic exportation of the source data to ORCON. This is important
in order to allow automation of offline calibration and alignment procedures, by eliminating the
need for those procedures to connect to the online network.
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Figure 5. PopCon monitoring Architecture

4.3 PopCon web based monitoring

A dedicated web based application, PopCon monitoring [12] was set up on a CMS web server in
order to look at all the logged information, hence monitoring the activity on the condition databases.

PopCon monitoring comprises five main layers (see figure 5):

• the PopCon API DB Interface retrieves the entities monitored by PopCon;

• the PopCon user Interaction Recorder is a collection that retains a history of interactions
with each user.

• the PopCon data-mining extracts patterns from data, entities monitored by PopCon. and
the history of recorded user interactions, hence transforming them into information such as
warnings, errors or alarms according to use case models.

• the PopCon info collector aggregates the information produced by the different database
transactions and the history of recorded user interactions, and encodes them in JSON1 format.

• the PopCon Web Interface displays the information about the database transactions from
the different user perspectives, organizing data in tables (see figure 6) and/or charts (see
figure 7).

In addition, two other web pages, very useful for database transaction monitoring, are pro-
duced:

1. an activity summary, in which the number of ORCON transactions, the subsystem involved,
the IOV and tag can be displayed, according to the users’ requests. An example is shown in
figure 7.

2. the logs of all the central scripts, as produced by the watchdog tools. Looking at those logs,
the correct behaviour of the central uploader machine is controlled, so that an alarm system,
based on that information, can recognize if some exports were not successful and, eventually,
inform the end-user of the error occurred. A screenshot of the page is shown in figure 8.
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Figure 6. The PopCon web interface represents information about database transactions in different types:
both charts and tables. A user can easily add or remove columns by clicking the checkbox and columns can
also be sorted. Information could be grouped according to different filters.

Figure 7. PopCon activity between end September-beginning of October 2008.

Figure 8. Screenshot of the web page produced by the monitoring system that checks the watchdog tools
for the automatic population of ORCON. Different colours helps to identify, quickly, the seriousness of the
problem.
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Figure 7 reports all the transactions towards the condition database accounts occurring in a
month of cosmic data taking in 2008. As the summary plot points out, almost all sub-detectors
used PopCon to upload calibration constants to the condition databases. An average of one hundred
PopCon applications per day were run during the test runs in Summer/Fall 2008, hence one hundred
connections per day to the condition databases took place.

During the whole year 2008 commissioning exercises, the total amount of condition data writ-
ten in the production database was approximatively 1 TB. The same rates and volumes are expected
for the future LHC collision data. Moreover, no network problems, neither for the online-offline
streaming, nor for Frontier were detected. All the conditions and calibrations were properly evalu-
ated for CRUZET and CRAFT data taken in 2008, and are being evaluated in current 2009 CRAFT
runs, leading to several global tags used for the reconstruction and the analysis of the cosmic ray
data by the whole CMS community.

5 Conclusions

A database system has been set up in order to upload, store and retrieve all non-event data for the
CMS experiment. The system relies on ORACLE database for data storage, and on the POOL-ORA
technology for the HLT and the offline algorithms. An application called PopCon, fully integrated
into the CMS software framework CMSSW, operates the population of the offline databases, and
adds some additional services such as transaction logging, hence allowing monitoring of all trans-
actions against the account dedicated to each subdetector in the offline databases. The whole chain
was deployed and tested succesfully during 2008 challenges with cosmic rays, and was further im-
proved and upgraded for 2009 cosmic ray data taking: these tests demonstrate that the system we
have just described is stable and robust enough for the 2009-2010 collision data taking.
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