490 research outputs found

    Leptonic decay constants fK, fD and fDs with Nf = 2+1+1 twisted-mass lattice QCD

    Full text link
    We present a lattice QCD calculation of the pseudoscalar decay constants fK, fD and fDs performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their values in the real world. The simulations are based on a unitary setup for the two light mass-degenerate quarks and on a mixed action approach for the strange and charm quarks. We use data simulated at three different values of the lattice spacing in the range 0.06 - 0.09 fm and at pion masses in the range 210 - 450 MeV. Our main results are: fK+ / fpi+ = 1.184 (16), fK+ = 154.4 (2.0) MeV, which incorporate the leading strong isospin breaking correction due to the up- and down-quark mass difference, and fK = 155.0 (1.9) MeV, fD = 207.4 (3.8) MeV, fDs = 247.2 (4.1) MeV, fDs / fD = 1.192 (22) and (fDs / fD) / (fK / fpi) = 1.003 (14) obtained in the isospin symmetric limit of QCD. Combined with the experimental measurements of the leptonic decay rates of kaon, pion, D- and Ds-mesons our results lead to the following determination of the CKM matrix elements: |Vus| = 0.2269 (29), |Vcd| = 0.2221 (67) and |Vcs| = 1.014 (24). Using the latest value of |Vud| from superallowed nuclear beta decays the unitarity of the first row of the CKM matrix is fulfilled at the permille level.Comment: 20 pp., 4 figures; revised version to appear in PRD; improved calculation of IB effects for fK+; minor changes in the final values. arXiv admin note: text overlap with arXiv:1403.450

    A determination of the average up-down, strange and charm quark masses from Nf=2+1+1N_f=2+1+1

    Get PDF
    We present a lattice QCD determination of the average up-down, strange and charm quark masses based on simulations performed by the European Twisted Mass Collaboration with Nf=2+1+1N_f = 2 + 1 + 1 dynamical fermions. We simulated at three different values of the lattice spacing, the smallest being approximately 0.06fm0.06fm, and with pion masses as small as 210MeV210 \text{MeV}. Our results are: mud(2GeV)=3.70(17)MeVm_{ud}(2\text{GeV})=3.70(17)\text{MeV}, ms(2GeV)=99.2(3.9)MeVm_s(2\text{GeV})=99.2(3.9)\text{MeV}, mc(mc)=1.350(49)GeVm_c(m_c)=1.350(49)\text{GeV}, ms/mud=26.64(30)m_s/m_{ud}=26.64(30) and mc/ms=11.65(12)m_c/m_s=11.65(12)

    B-physics computations from Nf=2 tmQCD

    Get PDF
    We present an accurate lattice QCD computation of the b-quark mass, the B and Bs decay constants, the B-mixing bag-parameters for the full four-fermion operator basis, as well as estimates for \xi and f_{Bq}\sqrt{B_q} extrapolated to the continuum limit and the physical pion mass. We have used Nf = 2 dynamical quark gauge configurations at four values of the lattice spacing generated by ETMC. Extrapolation in the heavy quark mass from the charm to the bottom quark region has been carried out using ratios of physical quantities computed at nearby quark masses, having an exactly known infinite mass limit.Comment: 7 pages, 4 figures, presented at the 31st International Symposium on Lattice Field Theory (Lattice 2013), 29 July - 3 August 2013, Mainz, German
    corecore