710 research outputs found

    Disordered jammed packings of frictionless spheres

    Full text link
    At low volume fraction, disordered arrangements of frictionless spheres are found in un--jammed states unable to support applied stresses, while at high volume fraction they are found in jammed states with mechanical strength. Here we show, focusing on the hard sphere zero pressure limit, that the transition between un-jammed and jammed states does not occur at a single value of the volume fraction, but in a whole volume fraction range. This result is obtained via the direct numerical construction of disordered jammed states with a volume fraction varying between two limits, 0.6360.636 and 0.6460.646. We identify these limits with the random loose packing volume fraction \rl and the random close packing volume fraction \rc of frictionless spheres, respectively

    Spatial correlations of elementary relaxation events in glass-forming liquids

    Get PDF
    The dynamical facilitation scenario, by which localized relaxation events promote nearby relaxation events in an avalanching process, has been suggested as the key mechanism connecting the microscopic and the macroscopic dynamics of structural glasses. Here we investigate the statistical features of this process via the numerical simulation of a model structural glass. First we show that the relaxation dynamics of the system occurs through particle jumps that are irreversible, and that cannot be decomposed in smaller irreversible events. Then we show that each jump does actually trigger an avalanche. The characteristic of this avalanche change on cooling, suggesting that the relaxation dynamics crossovers from a noise dominated regime where jumps do not trigger other relaxation events, to a regime dominated by the facilitation process, where a jump trigger more relaxation events.Comment: 8 pages, 6 figure

    Absence of `fragility' and mechanical response of jammed granular materials

    Full text link
    We perform molecular dynamic (MD) simulations of frictional non-thermal particles driven by an externally applied shear stress. After the system jams following a transient flow, we probe its mechanical response in order to clarify whether the resulting solid is 'fragile'. We find the system to respond elastically and isotropically to small perturbations of the shear stress, suggesting absence of fragility. These results are interpreted in terms of the energy landscape of dissipative systems. For the same values of the control parameters, we check the behaviour of the system during a stress cycle. Increasing the maximum stress value, a crossover from a visco-elastic to a plastic regime is observed.Comment: 6 pages, 9 figures, accepted in Granular Matter on 01-02-201

    Pacman Percolation and the Glass Transition

    Get PDF
    We investigate via Monte Carlo simulations the kinetically constrained Kob-Andersen lattice glass model showing that, contrary to current expectations, the relaxation process and the dynamical heterogeneities seems to be characterized by different time scales. Indeed, we found that the relaxation time is related to a reverse percolation transition, whereas the time of maximum heterogeneity is related to the spatial correlation between particles. This investigation leads to a geometrical interpretation of the relaxation processes and of the different observed time scales.Comment: 12 pages, 8 figures. arXiv admin note: text overlap with arXiv:1109.428

    Thermodynamics and Statistical Mechanics of dense granular media

    Full text link
    By detailed Molecular Dynamics and Monte Carlo simulations %of a realistic model we show that granular materials at rest can be described as thermodynamics systems. First we show that granular packs can be characterized by few parameters, as much as fluids or solids. Then, in a second independent step, we demonstrate that these states can be described in terms of equilibrium distributions which coincide with the Statistical Mechanics of powders first proposed by Edwards. We also derive the system equation of state as a function of the ``configurational temperature'', its new intensive thermodynamic parameter.Comment: Supplementary Informations adde

    Shear instabilities in granular mixtures

    Full text link
    Dynamical instabilities in fluid mechanics are responsible of a variety of important common phenomena, such as waves on the sea surface or Taylor vorteces in Couette flow. In granular media dynamical instabilities has just begun to be discovered. Here we show by means of molecular dynamics simulation the existence of a new dynamical instability of a granular mixture under oscillating horizontal shear, which leads to the formation of a striped pattern where the components are segregated. We investigate the properties of such a Kelvin-Helmholtz like instability and show how it is connected to pattern formation in granular flow and segregation.Comment: Phys. Rev. Lett. 94, 18800

    Jamming at zero temperature, zero friction, and finite applied shear stress

    Full text link
    Via molecular dynamics simulations, we unveil the hysteretic nature of the jamming transition of soft repulsive frictionless spheres, as it occurs varying the volume fraction or the shear stress. In a given range of control parameters the system may be found both in a flowing and in an jammed state, depending on the preparation protocol. The hysteresis is due to an underlying energy landscape with many minima, as explained by a simple model, and disappears in the presence of strong viscous forces and in the small σ\sigma limit. In this limit, structural quantities are continuous at the transition, while the asymptotic values of two time quantities such as the self-intermediate scattering function are discontinuous, giving to the jamming transition a mixed first-order second-order character close to that found at the glass transition of thermal systems

    Particle jumps in structural glasses

    Get PDF
    Particles in structural glasses rattle around temporary equilibriumpositions, that seldom change through a process which is much faster than the relaxation time, known as particle jump. Since the relaxation of the system is due to the accumulation of many such jumps, it could be possible to connect the single particle short time motion to the macroscopic relaxation by understanding the features of the jump dynamics. Here we review recent results in this research direction, clarifying the features of particles jumps that have been understood and those that are still under investigation, and examining the role of particle jumps in different theories of the glass transition.Comment: 10 pages, 4 figures, Review articl
    • …
    corecore